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Abstract.  A quantum phase space with Wannier basis is constructed: (i) 
classical phase space is divided into Planck cells; (ii) a complete set of Wannier 
functions are constructed with the combination of Kohn’s method and Löwdin 
method such that each Wannier function is localized at a Planck cell. With 
these Wannier functions one can map a wave function unitarily onto phase 
space. Various examples are used to illustrate our method and compare it to 
Wigner function. The advantage of our method is that it can smooth out the 
oscillations in wave functions without losing any information and is potentially 
a better tool in studying quantum-classical correspondence. In addition, we 
point out that our method can be used for time-frequency analysis of signals.
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1.  Introduction

Phase space, where every point represents a state in a classical dynamical system, is 
not only a fundamental concept but also an important tool in classical mechanics. In 
contrast, in quantum mechanics, the fact that position and momentum operators are 
not commutative results in the diculty of proper definition of quantum phase space. 
Nevertheless, physicists have tried various ways to adapt phase space into quantum 
mechanics. One famous example is the reformulation of quantum mechanics in phase 
space with path integral by Feynman [1].

Another well-known example is Wigner function, which gives a representation 
of wave function in phase space [2]. Later Husimi developed Q representation while 
Sudarshan and Glauber developed P representation in phase space for wave func-
tion [3–5]. However, all these three methods can only give us quasi-probability 
distributions in phase space: The Wigner function and Sudarshan–Glauber P func-
tion can be negative; for the Husimi Q function, its marginal distribution for a pure 
state ψ does not equal to |ψ|2. Despite these drawbacks, we have seen tremendous 
developments of all these methods over the years because they are natural bridges 
between quantum and classical dynamics and also have many practical applications 
in quantum optics, nuclear and particle physics, condensed matter and mesoscopic 
systems [6, 7].

In 1929 von Neumann already suggested a dierent way to map a wave function 
onto phase space [8, 9]. In von Neumann’s method, one divides classical phase space 
into Planck cells and then finds a set of orthonormal wave functions which are local-
ized at these Planck cells. With these orthonormal wave functions served as a basis, a 
wave function is mapped unitarily to phase space, and the amplitudes at the Planck 
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cells give us a true probability distribution. Von Neumann’s motivation was to estab-
lish quantum phase space so that he could borrow many ideas from classical statistical 
physics to set up a foundational framework for quantum statistical physics [8, 9].

However, von Neumann only showed how these localized wave functions could be found 
in principle but did not oer an ecient approach to compute them. Von Neumann’s 
method was developed in a recent work [10] where Kohn’s orthogonalization method [11] 
was employed and a set of Wannier functions localized at Planck cells were found.

In this work we further develop this quantum phase space with Wannier functions 
as its basis. We find a more ecient approach to compute these Wannier functions 
by using Löwdin’s orthogonalization method [12, 13] on top of the Kohn’s method 
[11]. With this Wannier basis, a wave function can be mapped unitarily onto phase 
space. The amplitude at each Planck cell is complex in general and, however, due to 
the unitarity of this mapping, the square of its amplitude magnitude is true prob-
ability. This is the crucial dierence between our method and well-known Wigner, P 
or Q function. The latter can only give us quasi-probability. With our method, it is 
now possible to numerically test many fundamental ideas proposed by von Neumann 
in 1929 [8, 9].

Using various concrete examples, we compare our unitary mapping to Wigner func-
tion. There are two key features in the comparison. (i) Our unitary mapping is very 
eective to smooth out the oscillations in a wave function and produces a probability 
distribution that in some cases resembles a classical trajectory while the Wigner func-
tion can not. (ii) The Wigner function is coarse-grained by averaging over Planck cells; 
the resulting distribution is very dierent from the original Wigner function but very 
similar to the true probability distribution obtained with our method. This shows that 
one can roughly get a probability distribution in phase space by coarse-graining Wigner 
function. However, a lot of information is lost with coarse-graining whereas our unitary 
mapping does not lose any information. Such a comparison shows that our unitary 
mapping can be an excellent tool for studying the quantum-classical correspondence, 
the central theme of quantum chaos [14]. In the end, we further point out that our 
method can be used for time-frequency signal analysis.

The rest of this paper is organized as follows. In section 2, von Neumann’s method 
is reviewed along with the work in [10]. In section 3, our method is described in detail. 
We then discuss how localized our Wannier functions are in section 4. In section 5, we 
compare our unitary projection to Wigner function with various examples. In section 6, 
we use an example to show how our method can be applied to signal analysis. In the 
end we draw some conclusions in section 7.

2. Review of Von Neumann’s method

Von Neumann in 1929 suggested a method to construct quantum phase space [8, 9], 
which consists of two steps: (i) dividing the classical phase space into Planck cells; (ii) 
finding a set of orthonormal wave functions which are localized at Planck cells. Von 
Neumann suggested to find these orthonormal wave functions by orthogonalizing a set 
of Gaussian wave packets of width ζ with the Schmidt method,

https://doi.org/10.1088/1742-5468/aaac54
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gjx,jk ≡ exp

[
−(x− jxx0)

2

4ζ2
+ ijkk0x

]
� (1)

where jx and jk are integers. When x0k0 = 2π, this set of Gaussian packets is complete.
This method shows that in principle one can map a wave function unitarily onto 

phase space and establish a probability distribution for a quantum state in phase space. 
This proof of principle was enough for von Neumann to prove in an abstract way of 
quantum ergodic theorem and quantum H theorem [8, 9].

However, von Neumann’s construction is not very computationally practical due to 
the following drawbacks:

	 (i)	The Schmidt orthogonalization procedure is computationally costly, rendering it 
numerically not feasible.

	 (ii)	The wave functions constructed in this way lack spatial translational symmetry. 
Since there should be no dierence of measuring coordinates at dierent sites, 
such a symmetry is desired.

	 (iii)	This method is very sensitive to the order of the orthogonalization procedure and 
will produce base functions with large tails (or standard deviations) bearing little 
resemblance to the original Gaussian functions.

In [10], Han and Wu were able to remove the second drawback. In their approach, 
the subscript jk is treated as band index and the Gaussian wave packets with the same 
jk are orthonormalized with Khon’s approach [11] to become a set of Wannier functions 
whose spacial translational symmetry is guaranteed. At the same time, the computa-
tional cost is reduced substantially such that the whole method is now computationally 
feasible. However, the orthogonalization among Gaussian wave functions with dierent 
jk is still Schmidt and the third drawback remains. In this work we employ Löwdin 
orthogonalization method [12] on top of Kohn’s method. As the Löwdin orthogonaliza-
tion produces a set of orthonormal vectors which are the most faithful to the original 
non-orthogonal vectors [13], the orthogonalization result is unique and independent 
of order of orthogonalization. So the third drawback is removed. Furthermore, the 
Löwdin method is more ecient and can reduce the computational cost dramatically.

In [8, 9], von Neumann proposed many fundamental ideas using his quantum phase 
space; however, these ideas had remained on the abstract level before our work. For 
example, von Neumann defined an entropy for pure quantum states using the prob-
ability distribution in his quantum phase space. However, there was no practical way 
to compute this entropy. With our method, we can now compute such an entropy 
numerically [10].

3. Our method

We focus on two dimensional phase spaces. Generalization to higher dimensions are 
straightforward as done in [10]. The detailed procedure of our method is elaborated as 
follows.

https://doi.org/10.1088/1742-5468/aaac54
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	 (i)	Choose an initial set of localized wave packets such as the Gaussian wave packets 
gjk(x) ≡ g0,jk(x) in equation (1). Find their Fourier transform g̃jk(k) ≡ F{gjk(x)}. 
In our calculations, we choose x0 = 1, k0 = 2π, ζ = (2π)−1, and we have

g̃jk(k) ≡ exp
[
− (

k

2π
− jk)

2
]
.� (2)

	 (ii)	At a fixed k ∈ [0, 2π), for each jk, we construct a columnwise vector whose nth 
element is g̃jk(k + 2nπ). We denote this vector by fk,jk.

fk,jk = [g̃jk(k + 2nπ)]Tn∈Z,� (3)

		 where the superscript T represents transpose. In numerical calculation, one needs 
to choose a cut-o N so that −N � n � N . These vectors fk,jk with dierent jk 
are not orthogonal to each other.

	 (iii)	Apply Löwdin orthogonalization to fk,jk: (a) put these vectors together to form a 
matrix

F ≡ [ fk,−Jk , · · · , fk,jk , fk,( jk+1), · · · , fk,Jk ]� (4)

		 where Jk is the cut-o for jk; (b) the matrix of the orthonormalized vectors is

[uk,−Jk , · · · , uk,jk , uk,( jk+1), · · · , uk,Jk ] = F (F †F )−
1
2 ;

�
(5)

		  (c) let w̃jk(k + 2nπ) = uk,jk(n)/
√
2π.

	 (iv)	The interval [0, 2π) is evenly divided into Nk points in numerical calculations. For 
every k of these Nk points, repeat step (ii) and step (iii). Finally, after Fourier 
transform, we get a set of orthonormal basis of Wannier functions {wjx,jk},

wjx,jk(x) ≡ wjk(x− jx).� (6)
		 For simplicity, from now on we will adopt Dirac notation and let |wj〉 = |wjx,jk〉, 

where ( jx, jk) is simplified to j whenever no confusion arises. Note that in our 
calculation we set Nk = 2Jk.

For these wave functions |wj〉, the relation 〈wjx,jk |wjx,j′k
〉 = δjk,j′k is guaranteed 

explicitly by the Löwdin orthogonalization in the above procedure and the relation 
〈wjx,jk |wj′x,jk〉 = δjx,j′x is guaranteed implicitly by Kohn’s method. The full orthonormal 
relation 〈wj|wj′〉 = δj,j′ is then achieved. Note that for a given set of non-orthogonal 
vector the Löwdin orthogonalization produces a unique set of orthonormal vectors 
[12, 13]. In contrast, the result of the Schmidt orthogonalization depends on the order 
of orthogonalization. As a result, our procedure gives rise to a unique set of Wannier 
functions once the initial trial wave function, such as the Gaussians in equation (1), are 
given. This removes the third drawback in von Neumann’s method. At the same time, 
it further reduces the computational cost.

https://doi.org/10.1088/1742-5468/aaac54
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As pointed out above, although they are not orthonormal, the Gaussian wave func-
tions in equation (1) are a complete set of basis when x0k0 = 2π. This is already implicitly 
mentioned by von Neumann [8, 9]. Consequently, the Wannier functions constructed 
out of these Gaussian functions with our method form a complete set of orthonormal 
basis. This means that the volume of a Planck cell is x0p0 = x0�k0 = 2π� = h with h 
being the Planck constant.

We summarize the basic feature of our quantum phase space: (1) It is made of Planck 
cells; (2) each Planck cell is assigned a Wannier function |wj〉; (3) all the Wannier func-
tions form a complete set of orthonormal basis. Any given wave function |ψ〉 can now 
be mapped onto our quantum phase space

|ψ〉 =
∑
j

|wj〉〈wj|ψ〉.� (7)

We emphasize that this mapping is linear and unitary, which is dierent from Wigner 
function, P representation, or Q representation that are nonlinear and not unitary. As 
a result, pj = |〈wj|ψ〉|2 is the probability at Planck cell j, a true probability distribution 
over phase space.

4. Localization of Wannier functions

In this section we examine how localized the above Wannier functions are. Shown in 
figure 1 is one typical Wannier function w3,10 in both k space and x space. This Wannier 

Figure 1.  ((a1) and (a2)) Wannier function w3,10 in the k space; ((b1) and (b2)) 
Wannier function w3,10 in the x space. In k space, the Wannier function is real and 
plotted directly; in x space, the Wannier function is complex and its amplitude is 
plotted. In the lower two panels, the amplitude of w3,10 is plotted in the semi-log 
format, showing exponentially decaying tails in both x and k spaces. The unit of x 
is x0 and the unit of k is k0. In our calculation, Jk  =  40, Nk  =  80, and N  =  50.

https://doi.org/10.1088/1742-5468/aaac54
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function is localized near the site (x = 3, k = 10× 2π) and is obtained by choosing 
Jk  =  40, Nk  =  80, and N  =  50 with our method. It is clear from the two lower panels 
which are the semi-log plots of their counterparts in the upper panels that the Wannier 
function is exponentially localized in both k space and x space.

To measure the localization quantitatively, we use the standard deviation that is 
defined as

σx( j) = 〈wj|(x− 〈x〉j)2|wj〉
1
2� (8)

σk( j) = 〈wj|(k − 〈k〉j)2|wj〉
1
2 .� (9)

As Wannier functions have translational symmetry with respect to jx, which is ensured 
by Khon’s method, we only need to consider Wannier functions w0,jk. Figure 2(a) illus-
trates how the standard deviations of these Wannier functions change with jk. The 
figure  shows that both σx and σk have maximal values at jk  =  0 and then decrease 
monotonically when | jk| increases. At the two ends where | jk| is large, we roughly have 
σx · σk ∼ 0.5, the lower limit of any wave packet demanded by the uncertainty relation. 
Both σx and σk are much larger, consequently, σx · σk is much larger than 0.5 when | jk| 
is small.

When the size of quantum phase space in our numerical calculation, i.e. the cut-o 
Jk increases, we find that the maximal values of both σx and σk increase. These two 
monotonic relations are plotted in figure 2(b). The data in the figure apparently show 
that the increase of both σx( jk = 0) and σk( jk = 0) with Jk is sub-logrithmic. This 
suggests that both σx and σk may have finite upper limits. Bourgain proved that such 
a basis exists in principle [15]. However, Bourgain’s approach of construction also 
involves Schmidt orthogonalization, which is computationally expensive.

5. Comparison with Wigner function

Our construction of quantum phase space yields a natural way to map a wave function 
onto phase space as in equation (7). Here we compare it to existing methods that map 
a wave function onto phase space. We focus on Wigner function as it is the most widely 
used method [6]. The dierences between Wigner function and our method are obvious: 

Figure 2.  (a) The widths σx (red) and σk (blue) of Wannier functions in both x and 
k spaces as functions of jk. Jk  =  40, Nk  =  80, and N  =  50. (b) The widths σx and σk 
at jk  =  0 as function of Jk, the cut-o of jk. Nk = 2Jk and N  =  50.

https://doi.org/10.1088/1742-5468/aaac54
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(i) Wigner function is a nonlinear mapping while ours is a linear unitary mapping; (ii) 
Wigner function is real and continuous in phase space while ours produces a discrete 
and complex function in phase space. However, as we will see, they bear some similarity 
after Wigner function is coarse-grained.

Wigner function (or Weyl transform of density matrix) of a wave function ψ(x) is 
defined as [2, 6]

W (x, k) =
1

π

∫
ψ∗(x+ y)ψ(x− y)e2ikydy.� (10)

The Wigner function can be coarse-grained with a function h(x, k) that is localized in 
phase space

Wh(x, k) =

∫
h(x′ − x, k′ − k)W (x′, k′)dx′dk′.� (11)

The function h(x, k) is usually chosen to be localized at a Planck cell. One popular 

choice is h(x, k) = 1
π
exp(− x2

σ2
x
− k2

σ2
k
) with σxσk =

1
2
 [6]. In our calculation, we choose

h(x, k) =

[
H(x+

1

2
)−H(x− 1

2
)

]
×

[
H(k +

1

2
)−H(k − 1

2
)

]
,

�
(12)

where H(x) is the Heaviside function. This h function is intuitively simple as it facili-
tates an integration precisely over a Planck cell. We shall use some typical and simple 
examples to compare our unitary projection to Wigner function.

Figure 3.  (a) The probability distribution of a Gaussian packet in our quantum 
phase space with the Wannier basis; (b) the corresponding Wigner function, where 
the negative parts are surrounded by positive parts; (c) the discrete coarse-grained 
Wigner function; (d) the amplitude in the x space. The unit of x is x0 and the unit 
of k is k0.

https://doi.org/10.1088/1742-5468/aaac54
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5.1. Gaussian packet in our quantum phase space

As the first example, we consider the following wave function

ψ(x) =
∑
jx,jk

wjx,jk(x)e
−j2x−j2k .

� (13)

This wave function can be regarded as a discrete Gaussian packet in our quantum 
phase space as shown in figure 3(a). It is positive in every Planck cell. In contrast, as 
seen in figure 3(b), its corresponding Wigner function has either positive or negative 
values. Interestingly, this Wigner function becomes significantly dierent from zero 
only at integer or half integer coordinates. Its negative spots at half integer coordinates 
are surrounded by positive spots at integer coordinates. This is a reflection of the oscil-
lations of the wave function ψ(x) in the x space (see figure 3(d)).

The coarse-grained Wigner function is plotted in figure 3(c). Its overall feature looks 
very similar to figure 3(a). Despite this similarity, we need to bear in mind that this 
coarse-grained Wigner function does not give probability at a given Planck cell. Later 
we will show an example, where the coarse-grained Wigner function can still be nega-
tive at some Planck cells. By coarse-graining, some information is lost while the projec-
tion with our Wannier basis is unitary and no information is lost.

As any smooth function can be roughly regarded as a superposition of many Gaussian 
functions, what we observe from this typical example is quite general: (i) Our unitary 
projection onto the quantum phase space is very eective in smoothing out the oscilla-
tions in wave function while Wigner function is not. (ii) Wigner function gives us only 
quasi-probability; it is still a quasi-probability when averaged over a finite region such as 
a Planck cell. However, from the similarity between the coarse-grained Wigner function 
and our unitary projection (figures 3(b) versus (c)), one can conclude that the quasi-
probability distribution of a coarse-grained Wigner function can be roughly regarded as 
a true probability distribution. In a sense, one can not claim this with great confidence 
before our work: there was no unitary mapping to phase space before our work and 
therefore no true probability distribution; without comparison to a true probability dis-
tribution, one would not know how close a coarse-grained Wigner function is to a true 
probability distribution. As our method can give arise to a true probability distribution, 
one is then allowed to use it to define an entropy for pure quantum states [8–10] One 
can not use Wigner function with or without coarse-graining for this purpose.

5.2. Harmonic oscillator

Harmonic Oscillator is one of the simplest problems in quantum mechanics. Its nth 
energy eigenfunction is

ψn(x) = (
1

2nn!
)1/2π−1/4 exp(−x2/2)Hn(x),� (14)

where Hn(x) are the Hermite polynomials. We choose n  =  30. The wave function of ψ30 
in the x space is shown in figure 4(a). And its unitary projection onto our quantum 
phase space is shown in figure 4(b) where we see that the wave function has significant 
weights along the classical orbit. As in the first example, the oscillations in ψ30(x) have 
disappeared in the Wannier representation. Looking more carefully, one can find that 

https://doi.org/10.1088/1742-5468/aaac54
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the weights near grids (3, 0) and (0, 3) are a slightly dierent. It is because our Wannier 
basis does not have translational symmetry in the k direction.

One very important feature in figure 4(b) is that most of the probabilities concentrate 
along a circle, which is the corresponding classical trajectory. This is not the case for the 
corresponding Wigner function. The Wigner function is shown on figure 4(c) where we can 
see 15 circles, a reflection of the oscillations in ψ30(x). The center has the largest density of 
distribution. Therefore, our unitary projection can produce a probability distribution that 
resembles a classical trajectory while Wigner function can not. In fact, we have applied 
our method to more sophisticated systems, where the quantum probability distribution in 
phase space obtained with our method bears striking similarity to its classical ensemble 
distribution in phase space. Unfortunately, these results are beyond this work and will be 
presented elsewhere. This shows that our unitary projection is a better tool to establish 
quantum-classical correspondence, the central subject in quantum chaos [14].

Figure 4(d) illustrates the coarse-grained Wigner function whose overall features 
look quite similar to figure 4(b). However, there are minor dierences, for example, it is 
symmetric in both x and k directions and it is positive at the center (0, 0). We note one 
important feature: the coarse-grained Wigner function is negative at (±2, 0) and (0,±2). 
This shows that the coarse graining with the chosen h function in equation (12) does 
not guarantee positive value at a given Planck cell. Despite its similarity to our unitary 
projection, a coarse-grained Wigner function is still a quasi-probability.

5.3. Schördinger cat state

In quantum optics, a cat state is defined as the superposition of two coherent states 
with opposite phase:

|cat〉 = |α〉+ | − α〉 = 2e
−|α|2

2

∑
n

α2n

√
(2n)!

|2n〉,� (15)

Figure 4.  The 30th energy eigenstate of an harmonic oscillator. (a) Its wave 
function in the x space; (b) its probability distribution resulted from the unitary 
projection onto our quantum phase space (the red circle is the corresponding 
classical trajectory); (c) its Wigner function; (d) its discrete coarse-grained Wigner 
function. The unit of x is x0 and the unit of k is k0.

https://doi.org/10.1088/1742-5468/aaac54
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where |2n〉 is a Fock state with 2n particles. In our calculation, we choose α = 3 + 3i. 
The wave function in the x space is shown on figure 5(a). The wave function looks like 
two moving Gaussian packets localized near x  =  −2 and x  =  2. Its unitary projection 
onto the quantum phase space is shown on figure 5(b). The wave function looks again 
rather smooth in the quantum phase space and is localized around two regions.

Its Wigner function is plotted in figure 5(c) and it has a rapidly oscillating center, 
which is regarded as an iconic feature of a coherent cat state [16]. However, this oscil-
lating center disappears in the coarse-grained Wigner function in figure 5(d) and in our 
unitary projection in figure 5(b). This means that the probability around this center is 
in fact close to zero.

With the examples above, we can conclude that our unitary projection of a wave 
function onto quantum phase space with the Wannier basis produces a result very simi-
lar to the coarse-grained Wigner function. This has two implications: (i) Our unitary 
projection is very eective to smooth out the oscillations in a wave function. Moreover, 
our projection is unitary and does not lose any information while a lot of information 
is lost in the coarse-graining. (ii) As a result, our unitary projection can produce a true 
probability distribution resembling a classical trajectory as most dramatically seen 
with the example of harmonic oscillator. The oscillations between positive and negative 
values in Wigner functions (see figures 3(b), 4(c) and 5(c)) are regarded as an indication 
of ‘quantumness’ in the quantum state [6, 16]. However, this also makes it dicult to 
build a connection between quantum dynamics and classical dynamics in phase space. 
One way to go around this diculty is to remove some information of a wave func-
tion, i.e. coarse-graining. Our unitary projection can achieve this goal without losing 
any information. The reason is that the oscillations are hidden in the Wannier basis. 
Therefore, our unitary projection is a better tool in studying the quantum-classical 
correspondence in phase space. It will also be interesting to compare our method to 

Figure 5.  Schördinger cat state |cat〉 = |α〉+ |−α〉 with α = 3 + 3i. (a) Its wave 
function in the x space; (b) its probability distribution resulted from the unitary 
projection onto our quantum phase space; (c) its Wigner function; (d) its discrete 
coarse-grained Wigner function. The unit of x is x0 and the unit of k is k0.
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Wigner function in other applications such as in quantum optics [7]. This is beyond 
the scope of this work.

6. Application in time-frequency signal analysis

Similar to Wigner function, our method can be applied to any pair of variables which 
are related to each other by Fourier transform; therefore, our method has a potential in 
application of time-frequency signal analysis which is used to characterize and manipu-
late signals whose statistics vary in time, such as transient signals.

In the past decades, many time-frequency analysing techniques have been devised 
[17]. Wavelets and short-time Fourier transform are two most prevalent methods. We 
compare our method with these techniques for a simulated example. The most impor-
tant goal in signal analysis is to extract the signal from the noise. So a testing signal 
is designed with a random noise and it is shown in figure 6(a). Figures 6(b)–(d) are 
results of our method, short-time Fourier transform, and wavelet, respectively. Our 
method works as well as the other two methods to identify the signal. However, it is 
clear from figure 6(b) that the result produced with our method is much more compact 
when stored on computer. In addition, our method with Wannier basis has the same 
frequency resolution for the whole frequency spectrum; in contrast, wavelet has lower 
frequency resolution for high frequencies. This means that our method should be bet-
ter than wavelet when dealing with problems that require high frequency-resolution in 
regions with high frequencies.

7. Conclusions

We have developed a method that can map a wave function unitarily onto phase 
space with a complete set of localized Wannier functions. Our method is significantly 

Figure 6.  (a) A signal with noise; (b) time-frequency analysis with our Wannier 
basis; (c) time-frequency analysis with the short-time Fourier transform; (d) time-
frequency analysis with a wavelet method.
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improved over the von-Nuemann’s method and a method in [10] by employing the 
Löwdin’s orthogonalization. This approach is not only independent of orthogonaliza-
tion order but also more numerically ecient. Various examples are used to compare 
our method to Wigner function, the most popular tool used to map a wave function 
onto phase space. The greatest advantage of our method over Wigner function is that 
our method can smooth out oscillations in wave function without losing any infor-
mation and produce a probability distribution resembling its classical trajectory. As 
a result, our method builds a better quantum-classical connection. In addition, our 
method has a great potential in signal analysis. In the future, it will be very interesting 
to generalize our method to quantum spin systems as Wigner function [18].
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