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Abstract

We propose a novel method for estimating nonseparable selection models.

We show that, given the selection rule and the observed selected outcome dis-

tribution, the potential outcome distribution can be characterized as the fixed

point of an operator, which we prove to be a functional contraction. We pro-

pose a two-step semiparametric maximum likelihood estimator to estimate the

selection model and the potential outcome distribution. The consistency and

asymptotic normality of the estimator are established. Our approach performs

well in Monte Carlo simulations and is applicable in a variety of empirical set-

tings where only a selected sample of outcomes is observed. Examples include

consumer demand models with only transaction prices, auctions with incom-

plete bid data, and Roy models with data on accepted wages.
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1 Introduction

Sample selection issues arise when the data available for analysis is not representative

of the entire population due to a selection process that systematically excludes certain

observations. For example, in consumer demand studies, researchers often only have

access to the transaction prices of chosen products, while the prices of non-selected

products remain unobserved (Goldberg, 1996; Cicala, 2015; Crawford et al., 2018;

Allen et al., 2019; Salz, 2022; Sagl, 2023; Cosconati et al., 2024). Similarly, in auctions,

data may include only the winning bids (or certain order statistics), excluding all other

submitted bids (Athey and Haile, 2002; Komarova, 2013; Guerre and Luo, 2019; Allen

et al., 2024). Sample selection issues have long been recognized in labor market studies

as well. For instance, wage data is typically available only for individuals who choose

to work (Gronau, 1974; Heckman, 1974), and, in the original Roy model (Roy, 1951),

which examines the occupational distribution of earnings, we observe earnings within

an occupation only for those who self-select into working in that sector.

Observing only a selected sample of outcomes—such as prices, bids, or wages—

presents significant challenges for estimating two key elements: (1) the model that

governs the selection process, such as a consumer demand model, an auction’s win-

ning rule, or a labor force participation model; and (2) the distribution of outcomes

prior to selection, often referred to as “potential outcomes” in the literature. Typi-

cally, it is assumed that potential outcomes are generated by an outcome equation,

which depends on both observable characteristics and unobservable error terms. Flex-

ibly estimating potential outcome distributions is crucial in many empirical contexts,

such as analyzing price distributions to understand firms’ pricing strategies and wage

distributions to examine inequality.

The first solution to sample selection bias is to use maximum likelihood estimation,

as in Heckman (1974) and Lee (1982, 1983), which relies heavily on distributional

assumptions regarding the error terms. More commonly employed methods for sample

selection models are two-step estimators proposed by Heckman (1976, 1979), which

introduce a correction term to account for the non-random nature of the sample. A

substantial body of theoretical work has been developed to relax the distributional

assumptions in the two stages of the estimation procedure (Ahn and Powell, 1993;

Andrews and Schafgans, 1998; Chen and Khan, 2003; Das et al., 2003; Newey, 2007,

2009; Chernozhukov et al., 2023). See also Vella (1998) for a comprehensive survey

2



on semi-parametric two-step estimation for selection models.

Our paper proposes a fundamentally different and novel approach to estimating

selection models where the outcome equation is nonparametric and nonseparable

in error terms. Rather than constructing a reduced-form bias correction term and

controlling it in the outcome equation, we directly analyze how the selection model

maps the potential outcome distributions to the distributions of selected outcomes

and seek to invert the mapping. The key insight of our approach is that, given

the selection model and potential outcome distributions across all alternatives, we

can derive the likelihood of an outcome being selected. Conversely, if this selection

likelihood were known, we could recover the potential outcome distributions from

the observed outcome distributions. This two-way relationship characterizes a fixed-

point problem. Building on this intuition, we construct an operator whose fixed

point represents the potential outcome distributions and show that this operator is a

functional contraction.

Formally, we consider a discrete choice problem in which each alternative is as-

sociated with a potential outcome distribution. A selection function maps a vector

of realized potential outcomes to a probability distribution over the alternatives. For

example, in the consumer demand setting, each alternative represents a product, and

the potential outcome is the offered price, with the selection function micro-founded

by the consumer’s utility maximization problem. We allow the outcome equations to

be fully nonparametric with nonseparable error terms and to vary flexibly across dif-

ferent alternatives. We assume that potential outcomes across different alternatives

are conditionally independent given observables.

Given the selection function, we construct an operator whose fixed point is the

potential outcome distributions. We establish sufficient conditions for it to be a

functional contraction (Theorems 1 and 2). Proving contraction within a function

space is challenging; to address this, we construct a metric in the same spirit as that

in Thompson (1963). Our results imply that, given the selection function and the

observed distributions of selected outcomes, we can nonparametrically recover the

potential outcome distributions. Moreover, this identification result is constructive:

starting with any initial guess for the potential outcome distributions, we iteratively

apply the operator. As the number of iterations approaches infinity, this process con-

verges to the potential outcome distributions associated with the selection function.

We propose a two-step semi-parametric maximum likelihood estimator for the
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selection function, parameterized by a finite-dimensional parameter, and potential

outcome distributions. In the first step, we obtain a nonparametric estimate of the

selected outcome distribution directly from the data. Given this estimate, we use our

contraction result to recover the potential outcome distributions for any parameter

in the selection function. In the second step, we construct the model-implied choice

probabilities and match them with the data moments. Once we have an estimator for

the selection parameter, a plug-in estimator for the potential outcome distribution

can be readily obtained.

We establish the consistency and asymptotic normality of the proposed estimator

(Theorems 3 and 4). This is particularly challenging because the mapping from the

potential to the selected outcome distributions does not have a closed form. We prove

that this mapping is a homeomorphism, a key result in establishing consistency and

asymptotic normality.

To examine the finite sample properties of our estimator, we conduct Monte Carlo

simulations across various designs of the outcome equation. Our results show that the

biases in our estimator are generally small, and the standard deviation decreases as the

sample size increases across all simulation designs. Our nonparametric estimation of

the potential outcome distributions outperforms the standard two-step method when

the two-step method misspecifies the outcome equations. Notably, even when the

selection function is misspecified by econometricians, our method performs robustly

in estimating the potential outcome distributions.

Compared to the traditional two-step method, our approach offers several key

advantages. First, we allow for fully nonparametric estimation of potential outcome

distributions. Importantly, our approach accommodates nonseparable error terms

in the outcome equation, allowing for fully heterogeneous effects of covariates on

outcomes. Moreover, we impose no symmetry assumptions, allowing the potential

outcome distributions to vary flexibly across alternatives. Unlike most selection cor-

rection approaches that focus on estimating conditional mean models (e.g., Das et al.

(2003) and various other semi-parametric versions)1, our goal is to recover the entire

outcome distribution with a flexible specification. We correct for sample selection bias

across the entire distribution of potential outcomes by examining how the bias is sys-

1These models restrict covariates to affecting only the location of the outcome distribution. A
recent paper by Chernozhukov et al. (2023) proposes a semi-parametric generalization of the Heck-
man selection model which accommodates rich patterns of heterogeneity in the effects of covariates
on outcomes and selection.
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tematically generated by the selection model. More recently, Arellano and Bonhomme

(2017) propose a method to correct for sample selection in quantile regression mod-

els; see also Newey (2007) and Fernández-Val et al. (2024) for recent developments in

nonseparable sample selection models.

Second, our approach does not require an instrument to exogenously shift the

choice probability, a typical requirement in the two-step method to avoid multi-

collinearity, nor does our approach rely on identification-at-infinity arguments. In

practice, finding a suitable instrument can be quite challenging (see Vella (1998) for

further discussion). d’Haultfoeuille and Maurel (2013a) and D’Haultfœuille et al.

(2018) develop estimation methods for semiparametric sample selection models with-

out an instrument or a large-support regressor, leveraging the independence-at-infinity

assumption.

Our approach relies on an alternative assumption: conditional independence of

potential outcomes given observables. This assumption is commonly invoked in auc-

tion models (e.g., independent private value auctions or mineral rights models)2 and

becomes more plausible when econometricians have access to a rich set of observ-

ables. In a binary selection model (e.g., the decision to work) where the potential

outcome for one alternative is constant (e.g., the wage for not working is 0) or in cen-

sored regression models with a single observed dependent variable, our conditional

independence assumption is trivially satisfied. We provide further discussion of this

assumption in Section 2.1.

Finally, our method accommodates a flexible selection function, applicable to a va-

riety of empirical settings, including consumer demand, multi-attribute auctions, and

labor market decisions. The agent’s utility in our model can depend on potential out-

comes, observable characteristics, unobserved alternative-specific heterogeneity (such

as product quality, compensating differentials, and other nonpecuniary factors), and

random preference shocks. Incorporating nonpecuniary components into the selection

model has proven essential in empirical studies (e.g., Heckman and Sedlacek, 1985;

Berry, 1994; Berry et al., 1995) and has gained attention in recent theoretical research

(Bayer et al., 2011; d’Haultfoeuille and Maurel, 2013b; Mourifie et al., 2020; Canay

et al., 2024; Lee and Park, 2023).

Our method is applicable to a wide range of empirical applications. For example,

2See Athey and Haile (2007) for further discussion on the conditional independence assumption
in auction models and potential testing approaches.
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in a companion paper (Cosconati et al., 2024), we estimate consumer demand in the

auto insurance market when only the transaction prices of selected insurance plans

are observed. In this market, insurance companies employ risk-based pricing, leading

to significant price variation across consumers. Our method enables nonparametric,

firm-specific estimates of the offered price distribution, offering valuable insights into

the heterogeneity of firms’ pricing strategies and, ultimately, the precision of their risk-

rating technology. In Section 6, we provide a more detailed discussion on applications

to three empirical settings: consumer demand, auction models with incomplete bid

information, and Roy models in labor economics, along with related literature.

The rest of the paper is organized as follows. Section 2 formally introduces our

model, with an illustrative example provided at the end. Section 3 presents the main

theoretical results. In Section 4, we describe the semi-parametric maximum likelihood

estimator and its asymptotic properties. Section 5 reports the results of our Monte

Carlo simulations, and Section 6 discusses various empirical applications. Finally,

Section 7 concludes. All proofs are delegated to the appendix.

2 Model

In Sections 2–3, all analyses are conditional on observable characteristics x, which

we omit to simplify notation. Throughout the paper, we use the consumer demand

example to illustrate the main results and clarify ideas; however, the approach is

broadly applicable to other selection models.

Consider a discrete choice problem. There is a finite set of alternatives J =

{1, · · · , J}. Each alternative is associated with a price distribution. Let Gj ∈
∆([p

j
, pj]) represent the price distribution associated with alternative j, where ∆(Y )

denotes the set of all cumulative distribution functions over a set Y ⊂ R. We assume

that pj ∼ Gj are independently distributed across alternatives (conditional on x).

The collection of Gj is denoted by G =
∏

j∈J Gj. We refer to G as the offered price

distribution.

A selection function is denoted by f = (f1, f2, · · · , fJ) where fj maps the prices of

alternatives p = (p1, · · · , pJ) to a strictly positive probability of selecting alternative
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j ∈ J .3 We assume that the selection function is continuously differentiable,

fj ∈ C 1 :
∏
j

[p
j
, pj] → (0, 1),

with
∑

j∈J fj ≤ 1. Here, the inequality allows for the case with an outside option.

The selection function is a primitive of the model. To provide a microfoundation,

for example, f might be derived from a consumer’s utility maximization problem as

illustrated in Section 2.1.

Let p−j = (p1, · · · , pj−1, pj+1, · · · , pJ) denote the vector of prices excluding j’s

price. The probability of selecting j conditional on pj is given by

Prj(pj;G) =

∫
p−j

fj(pj,p−j)
∏
k ̸=j

dGk(pk), (1)

where Prj(·;G) is a function defined on [p
j
, pj]. The assumption that prices are

independent across different alternatives allows us to express the joint distribution of

p−j as the product of their individual marginal distribution functions.

Let G̃j ∈ ∆([p
j
, pj]) represent the price distribution conditional on selecting alter-

native j. We derive G̃j using Bayes’ rule:

G̃j(p) =

∫ p

p
j

Prj(y;G)dGj(y)∫ pj
p
j

Prj(y;G)dGj(y)
. (2)

Note that Gj and G̃j share the same support, as selection function fj is strictly

positive. Let G̃ =
∏

j∈J G̃j and we call G̃ selected price distribution. Equations (1)

and (2) define a mapping from G to G̃. Let F :
∏

j ∆([p
j
, pj]) →

∏
j ∆([p

j
, pj]) denote

this mapping, i.e., G̃ = F (G).

In many empirical settings, researchers have access only to the selected price

distribution. However, the key primitives of interest are often the offered price distri-

bution. Our research question is how to recover the offered price distribution G from

3The assumption that the probability of selecting each alternative is strictly positive is analogous
to the overlap assumption in the treatment effect literature, which requires each individual to have
a positive probability of receiving each treatment level. This assumption is crucial for recovering the
offered price distribution. To illustrate, consider a scenario where fj = 0 whenever pj falls within a
certain subset of [p

j
, pj ]. In this case, any pj within that subset would not be observed in the data,

making it impossible to identify Gj within that subset without introducing additional assumptions.
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the observed selected price distribution G̃. Note that both G and G̃ are collections

of J cumulative distribution functions. Therefore, the cardinality of unknowns and

constraints are exactly the same in Equation (2) (assuming the selection function is

known). Since a cumulative distribution function is an infinite-dimensional object,

the key challenge is solving for a collection of infinite-dimensional objects entangled

in a nonlinear system. We will explore this in detail in Section 3.

2.1 An Illustrative Example

We now present a simple example to illustrate the key assumptions of our model and

compare them to the standard assumptions in the literature. Consider a consumer

choosing between two products, j = 1, 2, to maximize her utility. The consumer’s

utility from product j is given by a scaler value:

uj = γpj + εj, (3)

where pj represents the price of product j for this consumer, and εj represents an

unobserved utility shock. We abstract from the possibility that the consumer’s utility

may depend on observable characteristics and unobserved product heterogeneity for

this example. In this model, the price sensitivity parameter γ and the distribution

of εj determine the selection function f . Let ε̃ = ε1 − ε2 denote the error difference.

If ε̃ ∼ N (0, 1), this represents a binary probit model, and the selection function for

product 1 takes the following form:

f1(p1, p2) = 1− ΦN (γ(p2 − p1)) ,

where ΦN denotes the CDF for standard normal distribution.

In this illustrative example, we consider a simple linear outcome equation with an

additive error term. For each product j = 1, 2, the price is generated by the following

equation:

pj = xβj + ηj, (4)

where x represents observable characteristics, and ηj denotes a random shock, which,

for simplicity, is assumed to be independent of x.
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Suppose the econometrician observes the price of product 1 only when it is chosen

by the consumer. We derive the conditional mean of p1 given that it is observed:

E(p1|x, u1 > u2) = xβ1 + E(η1|γp1 + ε1 − (γp2 + ε2) > 0)

= xβ1 + E(η1|x γ(β1 − β2)︸ ︷︷ ︸
β∗

+ [γ(η1 − η2) + ε̃]︸ ︷︷ ︸
composite error: ε∗

> 0)

= xβ1 + E(η1|xβ∗ + ε∗ > 0). (5)

The conditioning term xβ∗ + ε∗ > 0 in Equation (5) represents the reduced-form

selection model typically seen in the literature. Sample selection issue arises when η1

and ε∗ are correlated, so that E(η1|xβ∗ + ε∗ > 0) ̸= 0. In the two-step estimation

literature, researchers often impose assumptions on the joint distribution of (ε∗, η1, η2).

For example, ε
∗

η1

η2

 ∼ N


00
0

 ,

 1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3


 .

We now take a closer look at the correlation between the composite error (ε∗) and

the error in the outcome equation (η1). Specifically,

cov(ε∗, η1) = cov(γ(η1 − η2) + ε̃, η1)

= γvar(η1)− γcov(η1, η2) + cov(η1, ε̃). (6)

Equation (6) shows that the error term η1 directly enters the composite error ε∗,

implying that cov(ε∗, η1) ̸= 0 unless γ = 0. This correlation is by construction in

selection models, as agents make decisions after observing the potential outcomes.

Another common concern regarding selection bias arises from potential correlation

between errors in the outcome equation (e.g., η1) and those in the structural selection

model (e.g., ε̃), as represented by the third term in Equation (6). For example,

unobserved productivity factors may create correlation between a worker’s willingness

to work and their wage. Our model also accommodates this type of correlation.

The only assumption we impose is that the error terms in outcome equations across

different alternatives are independent conditional on observables. This implies that

cov(η1, η2) = 0 in Equation (6). In a simple binary model with only one dependent
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variable of interest, such as Tobit Type 1 or Type 2, this assumption holds trivially.

Heckman and Honore (1990) show that, under a strong log-normality assumption, the

correlation structure between two outcome variables can be identified; however, this

result does not hold more generally (see discussions in French and Taber, 2011). Due

to the nature of the selection problem, the data include only the price of the selected

alternative, while competing prices for unselected alternatives are not observed. If the

prices of the two products tend to move together, we would not be able to observe this

pattern. French and Taber (2011) point out that since the data provides only two one-

dimensional price distributions, it is impossible to recover the full joint distribution

of a two-dimensional object without imposing additional assumptions.

The conditional independence assumption is commonly employed in auction mod-

els, such as independent private value auctions or mineral rights models, where signals

are assumed to be independent given the common value. This assumption is more

plausible when econometricians have access to a rich set of observables. The con-

ditional independence assumption essentially rules out the presence of a common

unobserved factor, x∗, that introduces correlation between outcomes, even after con-

ditioning on observables. When this assumption is not satisfied, the observed price

distribution for each alternative, conditional on observable x, is a mixture of price

distributions conditional on (x, x∗). We then need to first analyze this mixture model

and use additional parametric structures or instruments to identify the selected price

distributions conditional on (x, x∗). Techniques for this type of deconvolution prob-

lem have been studied in the literature (see the recent survey articles by Compiani

and Kitamura, 2016; Hu, 2017) and are beyond the scope of this paper. We maintain

the conditional independence assumption for the remainder of the paper.

Finally, we highlight several additional features that differentiate our model from

the existing literature. First, our model allows the outcome equation to be fully

flexible and nonparametrically specified as pj = hj(x, ηj), where hj is an unknown

function that may be nonseparable in the error term. Our goal is to recover the

entire distribution of pj conditional on x, rather than only estimating the parameters

in the conditional mean function, such as βj in Equation (4). Importantly, we fully

account for heterogeneity in the effects of covariates on outcomes. Second, our model

does not require an instrument that exogenously shifts choices between alternatives

and is excluded from the outcome equation—a critical requirement for identification

and estimation in the two-step method. In other words, we allow the same set of
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observables to enter both the outcome and selection equations. Moreover, we impose

minimal assumptions on the selection function. It can accommodate nonparametric,

nonseparable relationships between observable and unobserved errors, offering much

greater flexibility than the utility specification in Equation (3); in fact, it does not

even need to be derived from a utility maximization problem. Our framework also

allows for alternative-specific unobserved heterogeneity, which is a desirable feature

in many empirical contexts.

3 Main Results

We define an operator T :
∏

j ∆([p
j
, pj]) →

∏
j ∆([p

j
, pj]) by inverting Equation (2).

Let Ψ = (Ψ1,Ψ2, · · · ,ΨJ) ∈
∏

j ∆([p
j
, pj]).

(TΨ)j(p) =

∫ p

p
j

dG̃j(y)/Prj(y; Ψ)∫ pj
p
j

dG̃j(y)/Prj(y; Ψ)
. (7)

Note that in Equation (7), Prj(y; Ψ) is the probability of selecting j conditional

on pj = y and Ψ−j, where Ψ−j is the collection of offered price distributions of all

alternatives except j.

An intuitive way to understand the operator in Equation (7) is as follows. Suppose

we begin with a conjecture for the offered price distribution, denoted by Ψ. Based

on this conjecture, we can calculate the probability of selecting alternative j given

pj = y, i.e., Prj(y; Ψ). Using this selection probability, we can invert the observed

distribution of selected prices to infer the distribution of offered prices by dividing

dG̃j(y) by Prj(y; Ψ). The denominator in Equation (7) serves as a normalizing factor.

This process updates the initial conjecture Ψ. If the conjecture Ψ is correct and

matches the true distribution G, the update will also equal G. Thus, the offered price

distribution G a fixed point of the operator T .

The operator T is a contraction if there exists some real number 0 ≤ ρ < 1 such

that for all Ψ,Φ ∈
∏

j ∆([p
j
, pj]),

D(TΨ, TΦ) ≤ ρD(Ψ,Φ),
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given some metric D.4 In the reminder of this section, we first construct the metric

D and then characterize the modulus ρ. We discuss several special cases of our model

at the end.

3.1 Constructing the Metric

We begin by defining a metric in the set of all cumulative distribution functions

for an alternative j. Let Ψj and Φj denote two probability measures in ∆([p
j
, pj]).

Recall that two probability measures Ψj and Φj are equivalent, denoted Ψj ∼ Φj,

if they are absolutely continuous with respect to each other. When Ψj ∼ Φj, the

Radon-Nikodym derivative,

dΨj

dΦj

: [p
j
, pj] → (0,∞),

exists, as guaranteed by the Radon-Nikodym Theorem. If both Ψj and Φj have

continuous densities, the Radon-Nikodym derivative simplifies to the ratio of densities:

dΨj

dΦj

(p) =
Ψ′

j(p)

Φ′
j(p)

.

Note that

Ψj = Φj ⇔ dΨj

dΦj

(p) = 1 Φj-a.e.

In the space ∆([p
j
, pj]), we define a metric d : ∆([p

j
, pj]) ×∆([p

j
, pj]) → [0,+∞]

to simplify the analysis.5

d(Ψj,Φj) =

 ln ess supy∈[p
j
,pj ]

dΨj

dΦj
(y) + ln ess supy∈[p

j
,pj ]

dΦj

dΨj
(y), if Ψj ∼ Φj,

+∞ otherwise.

4We adopt the convention that +∞ and +∞ are not comparable, but c < +∞ for any c ∈ R+.
5This metric is a variant of the Thompson metric (Thompson, 1963). The Thompson metric

between two functions s, q ∈ RY is

dThompson(s, q) = max{ln sup s(y)

q(y)
, ln sup

q(y)

s(y)
}.
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Given our operator T in Equation (7), for all Ψj,Φj ∈ ∆([p
j
, pj]),

(TΨ)j ∼ G̃j ∼ (TΦ)j.

Thus,

d((TΨ)j, (TΦ)j) = ln ess sup
pj

d(TΨ)j
d(TΦ)j

(pj) + ln ess sup
pj

d(TΦ)j
d(TΨ)j

(pj).

The observed selected price distribution G̃j appears in both (TΨ)j and (TΦ)j. As

a result, G̃j cancels out in the distance above. Moreover, the denominator in our

operator is a normalizing factor, which is also canceled out after we take the sum of

log ratios. Consequently, the distance between (TΨ)j and (TΦ)j only relies on the

ratio between selection probabilities:

d((TΨ)j, (TΦ)j) ≤ sup
pj

ln
Prj(pj; Ψ)

Prj(pj; Φ)
+ sup

pj

ln
Prj(pj; Φ)

Prj(pj; Ψ)
,

where equality holds when G̃j admits full support on [p
j
, pj].

Next, we define a metric in the space
∏

j ∆([p
j
, pj]) by taking the maximum dis-

tance among all alternatives:

D(Ψ,Φ) = max
j∈J

d(Ψj,Φj)

for any Ψ,Φ ∈
∏

j ∆([p
j
, pj]). From now on, we work with the metric space (

∏
j ∆([p

j
, pj]), D).

3.2 Functional Contraction

For j ∈ J , we define the maximum semi-elasticity difference as

Mj = sup
pj ,p−j ,p′

−j

∣∣∣∣∂ ln fj(pj,p−j)

∂pj
−

∂ ln fj(pj,p
′
−j)

∂pj

∣∣∣∣. (8)

The quantity
∂ ln fj
∂pj

measures how sensitive the log of the choice probability changes

with respective to the price, and therefore represents the semi-elasticity. Let

ρ =
J − 1

4
max
j∈J

(pj − p
j
)Mj.
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Theorem 1. If ρ < 1, the operator T is a contraction with modulus less than ρ.

Proof. See Appendix B.1.

By the Banach fixed point theorem, whenever ρ < 1, any selected distribution

G̃ corresponds to a unique offered distribution G. Theorem 1 implies that we can

nonparametrically identify the potential outcome distributions G from the observed

selected outcome distribution G̃, given the selection function f . Moreover, this result

provides a constructive method for solving G. Take any Ψ ∈
∏

j ∆([p
j
, pj]), by

Theorem 1,

D(T nΨ, G) = D(T nΨ, TG) ≤ ρD(T n−1Ψ, G) ≤ ρn−1D(TΨ, G),

where D(TΨ, G) is finite. This implies

lim
n→∞

D(T nΨ, G) = 0.

lim
n→∞

T nΨ = G.

Thus, we can simply take an initial guess for the potential outcome distributions and

iteratively apply the operator. As the number of iterations approaches infinity, this

process converges to the potential outcome distributions associated with the selection

function.

Note that the condition of Theorem 1 is a joint constraint on the selection function

and the price range. The bound on the modulus, ρ, consists of the product between

the number of alternatives, the price range pj − p
j
, and the maximum semi-elasticity

difference.6 Our condition requires this product to be small. If we expand the support

[p
j
, pj] to [p′

j
, p′j] where

p′
j
< p

j
< pj < p′j

with G̃ unchanged, ρ becomes weakly larger, which implies now it is more difficult

for the operator T to contract. This comparison is intuitive. Since the domain∏
k ̸=j ∆([p

k
, pk]) × ∆([p′

j
, p′j]) is larger, we are considering more collections of prob-

ability measures, making it more challenging to control D(TΨ,TΦ)
D(Ψ,Φ)

for all Ψ and Φ in

this domain.

6Note that by definition ρ is unitless. Changing the unit of price does not affect ρ.
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To understand the maximum semi-elasticity difference Mj in the modulus ρ, con-

sider an extreme case where the choice probabilities do not vary with prices at all,

indicating perfectly inelastic demand. In this scenario, there is effectively no selection

and the offered price distribution coincides with the selected price distribution. The

modulus equals 0 and we obtain the fixed point immediately.

It may be a concern that a large number of alternatives J would result in a

large modulus. However, we show that a large number of alternatives could lead to

a small maximum semi-elasticity difference. For example, consider the multinomial

logit model, arguably the most popular model for discrete choices due to its analytical

form and ease of estimation:

fj(p1, · · · , pJ) =
exp(γpj)∑J
k=1 exp(γpk)

,

where γ represents the consumer’s price sensitivity. We derive the semi-elasticity for

the logit model,
∂ ln fj(pj,p−j)

∂pj
= γ(1− fj(p)).

When J is large, the choice probability for each alternative tends to be small, so

that the log derivative is approximately equal to γ. As a result, the maximum semi-

elasticity difference is close to 0.

The crux and the bulk of the proof for Theorem 1 is to provide a bound on the

ratio

sup
Ψ,Φ∈

∏
j ∆([p

j
,pj ])

D(TΨ, TΦ)

D(Ψ,Φ)
.

This is difficult as the domain of the supreme,
∏

j ∆([p
j
, pj]), is a large space. For

instance, if J = 10, the supreme is over 20 functions. In the proof of this theorem

in Appendix B.1, we employ a technique called a change of measure, also know as

the tilted measure, and combine it with insights from transportation problem. The

bound ρ is relatively tight: there exist selection functions for which the supremum is

arbitrarily close ρ. In Appendix A, we connect our contraction result with quantal

response equilibria (McKelvey and Palfrey, 1995).
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3.3 Special Cases

Thus far, we have not imposed any structure on the selection function. For a gen-

eral selection function, we have to take the supreme over p−j,p
′
−j to compute the

maximum semi-elasticity difference. Now we impose an assumption on the selection

function to determine where the supreme is attained.

Assumption 1 (Log Supermodularity). For all j ∈ J and pj ∈ [p
j
, pj],

∂ ln fj(pj ,p−j)

∂pj

is weakly increasing in each pk with k ̸= j.

Given log supermodularity, the maximum semi-elasticity difference is attained at

the boundary,

Mj = sup
pj

∣∣∣∣∂ ln fj(pj,p−j)

∂pj
−

∂ ln fj(pj,p−j
)

∂pj

∣∣∣∣.
What is left in the definition of maximum semi-elasticity difference is the supreme

over pj. It turns out that we can use pj − p
j
in the definition of ρ to eliminate the

supreme over pj and give a tighter bound. The result is as follows.

ρ∗ =
J − 1

4
max
j∈J

[ln fj(p)− ln fj(pj,p−j)− ln fj(pj,p−j
) + ln fj(p)].

Theorem 2. Suppose that Assumption 1 holds. If ρ∗ < 1, the operator T is a

contraction with modulus less than ρ∗.

Proof. See Appendix B.2.

Under Assumption 1, the modulus ρ∗ takes a much simpler form and is straight-

forward to compute. The log-supermodularity assumption holds in models widely

adopted by empirical researchers. For example, the multinomial logit model satisfies

Assumption 1. Another example is the binary probit model we describe in Section

2.1. The log-supermodularity condition in Assumption 1 holds for the binary probit

model and Theorem 2 applies.7 However, Assumption 1 may not hold for probit

7To see this, we compute the log derivative for the binary probit model:

∂ ln f1(p1, p2)

∂p1
=

γϕN (∆)

1− ΦN (∆)
,

∂2 ln f1(p1, p2)

∂p1∂p2
= γ2 d

d∆

[
ϕN (∆)

1− ΦN (∆)

]
,
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models with three or more alternatives; in such cases, the more general results in

Theorem 1 can be applied.

To summarize, our contraction results provide a novel method for identifying

the potential outcome distribution from the observed selected outcome distribution,

given any selection function f—whether parametric or nonparametric, and regardless

of whether it is microfounded in a utility maximization problem. Moreover, the

identification is constructive: starting with an initial guess, iterative application of

the operator converges to the potential outcome distributions associated with the

selection function. These theoretical results are essential for estimating the selection

function and potential outcome distributions, which will be discussed in the next

section.

4 Estimation

Building on the theoretical results in Section 3, we now turn to the estimation of

the model’s primitives. We begin by discussing the estimation of the offered price

distribution G when the selection function f is known, followed by the more complex

case where both f and G must be jointly estimated.

In the data, for each individual i, we observe their choice, characteristics, and the

price of the selected product. Let yij = 1 if j is chosen by i, and 0 otherwise. Since the

alternatives are exclusive,
∑J

j=1 yij = 1. Let xij represent a vector of observable char-

acteristics. We define yi = (yi1, · · · , yiJ)′ and xi = (x′
i1, · · · , x′

iJ)
′ ∈ X. The observed

selected prices in the data enable us to estimate G̃ using standard nonparametric

methods. Let Ĝ denote the estimate of G̃, and Ĝ(x) denote the estimate conditional

on observable x.

4.1 Estimation with a Known Selection Function

In Section 3, we show that for a given selection function f , the offered price distri-

bution G can be uniquely determined from the selected price distribution G̃, as the

number of iterations of the operator T defined in Equation (7) goes to infinity. In

practice, however, econometricians typically do not observe the true selected price

where ∆ = γ(p2−p1) and the term in the square bracket is known as the hazard rate or inverse Mills
ratio. As Gaussian satisfies increasing hazard rate (Baricz, 2008), the log-supermodularity condition
in Assumption 1 holds.
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distribution G̃, but rather an estimate Ĝ, which is subject to sampling errors. More-

over, when iterating the operator T to obtain the offered price distribution G, the

process stops after a finite number of iterations m. Therefore, our estimation of G

contains these two sources of error.

Let Tm
Ĝ
Ψ denote our estimator for G, using the estimated selected price distribu-

tion Ĝ and initiating the operator iteration with Ψ ∈
∏

j ∆([p
j
, pj]). The distance

between our estimator and the true G is bounded by the sum of sampling errors from

a finite sample size and the approximation errors from finite iterations, as shown in

the following triangular inequality.

D(G, Tm
Ĝ
Ψ) ≤ D(G,F−1(Ĝ))︸ ︷︷ ︸

finite sample size

+D(F−1(Ĝ), Tm
Ĝ
Ψ)︸ ︷︷ ︸

finite iteration

,

where F−1 denotes the inverse of F . Recall that F is the mapping from G to G̃

defined in Equations (1) and (2). The inverse mapping, F−1, maps G̃ back to G.

Theorem 1 guarantees that we can obtain G from G̃ by iterating the operator T an

infinite number of times.

We first focus on the sampling error D(G,F−1(Ĝ)). The next proposition shows

that this error goes to zero as Ĝ converges to G̃

Proposition 1. Suppose ρ < 1. The mapping F is a homeomorphism. Moreover,

both F and F−1 are Lipschitz continuous, with Lipschitz constants 1 + ρ and 1
1−ρ

,

respectively.

Proof. See Appendix B.3.

Since F is a homeomorphism, the inverse F−1 is well-defined and G = F−1(G̃).

Since F−1 is continuous, we have

F−1(Ĝ)
p→ F−1(G̃) as Ĝ

p→ G̃.

Moreover, as F−1 is Lipschitz continuous, F−1(Ĝ) converges to G at the same rate

as Ĝ converges to G̃.

We now analyze the approximation error D(Tm
Ĝ
Ψ, F−1(Ĝ)) due to the finite num-

ber of iterations. Note that this error term tends to 0 at speed ρm. Thus, if ρm decays

faster than the convergence rate of Ĝ to G̃, then Tm
Ĝ
Ψ converges to G at the same
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rate as Ĝ converges to G̃. We let m(n) express the dependence of the number of

iterations on the sample size. The following result summarizes the discussion above.

Corollary 1. Suppose that Ĝ
p→ G̃ at a polynomial rate of nk with k > 0. If

lim inf
n→+∞

m(n)

lnn
> k(ln(1/ρ))−1,

then T
m(n)

Ĝ
Ψ

p→ G at rate nk.

For instance, if the support of G̃ is finite, Ĝ → G̃ at rate
√
n. If

lim
n→∞

ρm(n)
√
n = 0 or lim inf

n→+∞

m(n)

lnn
>

1

2
(ln(1/ρ))−1,

Tm
Ĝ
Ψ converges to G at rate

√
n.

4.2 Estimation with an Unknown Selection Function

We now consider the case where the selection function f is unknown to econometri-

cians and we jointly estimate f and G. As discussed in Section 3, given any selection

function f , whether parametric or nonparametric, our contraction results provide a

straightforward method for recovering the potential outcome distribution from the ob-

served selected outcome distribution. This step utilizes all the information contained

in the selected outcome distribution. To further identify and estimate the selection

function f , we must leverage additional data, specifically the “market share” of each

alternative.

The dimensionality of market shares determines how flexibly we can estimate f .

For example, if market shares are observed conditional on continuously distributed

covariates, it is possible to estimate a semiparametric single-index model (Ichimura,

1993; Klein and Spady, 1993) for the selection function f . While allowing for a semi-

parametric or nonparametric selection function is theoretically possible, implementing

it would be highly complex and data-intensive. In most empirical settings, market

shares are observed conditional on discrete values of covariates. We therefore focus

on the case where the selection function is parametrically specified in the estimation.8

8In our Monte Carlo simulations, we consider a scenario where the selection function is misspeci-
fied by the econometrician. We find that our estimates of the potential outcome distributions remain
quite robust even when the selection function is misspecified.
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We assume that the selection function f is derived from a standard multinomial

choice model with an indirect utility given by

uij = vj(pij, xij, εij; θ),

where vj is a known function parametrized by a finite-dimensional parameter θ; pij

denotes the offered price of alternative j for individual i; the vector of unobserved

error terms εi = (εi1, · · · , εiJ) is jointly distributed according to a known distribution.

Note that our framework fully allows that the unobserved error term enters the utility

function in a nonseparable way. The individual chooses an alternative to maximize

utility, and the selection function f is captured by the parameter θ. Let θ0 denote

the true parameter. For example, one commonly used specification is as follows:

uij = γpij + x′
ijβ + ξj + εij, j = 1, 2, · · · , J,

where ξj represents a scalar-valued unobserved characteristic of alternative j. In this

example, θ = (γ, β, ξ), where ξ = (ξ1, · · · , ξJ).
We estimate the parameter θ in the selection function by matching the model-

implied choice probabilities to those observed in the data. Specifically, for an indi-

vidual with observable characteristic xi, the probability of choosing alternative j is

given by the following equation:

Probj(x; θ, Ĝ,m) =

∫
p

fj(p;x, θ)d
(
Tm
Ĝ(x),θ

Ψ
)
(p), (9)

where Tm
Ĝ(x),θ

Ψ represents the estimated offered price distribution after iterating the

operator T for m steps, starting with the initial value Ψ. The operator is constructed

using the estimated selected price distribution conditional on x, denoted by Ĝ(x), and

the selection function parameterized by θ. Note that θ affects the choice probabilities

both directly through the selection function and indirectly through the estimated

offered price distribution.

Let zi = {xi, yi}. Given an i.i.d. sample of {zi}ni=1 and a first-step nonparametric

estimator Ĝ(x), we propose a semiparametric maximum likelihood estimator for θ:

θ̂ = argmax
θ∈Θ

Q̂n(θ), (10)
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where

Q̂n(θ) =
1

n

n∑
i=1

J∑
j=1

yij lnProbj(xi; θ, Ĝ,m(n)). (11)

Once θ̂ is obtained, a plug-in estimator for G is given by T
m(n)

Ĝ,θ̂
Ψ.

4.3 Consistency and Asymptotic Normality

In this section, we show that the estimator defined in Equation (10) is consistent

and asymptotically normal. We maintain the previous assumptions on the selection

function: fj ∈ C 1 :
∏

j[pj, pj] → (0, 1). The additional technical conditions required

for the consistency of θ̂ are as follows.

Assumption 2. (i) The space Θ of parameter θ is compact; (ii) for each x ∈ X,

the selection function f(p;x, θ) is jointly continuous in θ and p; (iii) the condition

in Theorem 1 holds for all θ ∈ Θ, that is, supθ∈Θ ρ(θ) ≤ ρ̄ < 1 for some ρ̄; (iv) the

number of iterations m(n) → ∞; (v) Ĝ
p→ G̃.

Assumption 3 (Identification). There does no exist θ′ ∈ Θ, θ′ ̸= θ0, offered price

distributions G, G′ ∈
(∏

j ∆([p
j
, pj])

)X
such that for all j ∈ J and x ∈ X

F (G(x); θ0) = F (G′(x); θ′),∫
p

fj(p;x, θ0)dG(x)(p) =

∫
p

fj(p;x, θ
′)dG′(x)(p).

Assumption 2 (i) and (ii) are standard regularity conditions. Assumption 2 (iii)

ensures that for all θ ∈ Θ, the operator T is a contraction. Assumption 2 (iv)

requires that the number of iterations m tends to infinity, but it does not impose any

restrictions on the rate at which m approaches infinity. Assumption 2 (v) ensures

that our first-step estimator Ĝ is consistent. Assumption 3 imposes the identification

condition, which requires that there does not exist another parameter that can yield

the same selected price distribution and choice probabilities.

Theorem 3 (Consistency). Under Assumptions 2 and 3, θ̂
p→ θ0, T

m(n)

Ĝ,θ̂
Ψ

p→ G.

Proof. See Appendix B.3.
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Proving this theorem turns out to be challenging. We cannot rely on the standard

consistency arguments for maximum likelihood estimators, as Q̂n(θ) is not a sample

average. Since all data points are already used to estimate Ĝ, each term in Q̂n(θ)

depends on the entire dataset. Moreover, the number of iterations depends on the

sample size n.

To prove consistency, we invoke the fundamental consistency theorem for ex-

tremum estimators (Theorem 2.1 in Newey and McFadden (1994)). We construct

the true population objective function as follows:

Q0(θ) = Ex

J∑
j=1

(∫
p

fj(p;x, θ0)dG(x)(p)

)
ln
(
Prob∗j(x; θ, G̃)

)
,

where
∫
p
fj(p;x, θ0)dG(x)(p) represents the true probability of selecting alternative

j conditional on x; and

Prob∗j(x; θ, G̃) =

∫
p

fj(p;x, θ)dF
−1(G̃(x), θ)(p). (12)

Equation (12) represents the model-implied choice probability for alternative j con-

ditional on x, given the model parameter θ, the true selected price distribution G̃,

and as the number of iterations goes to infinity. By the identification condition in

Assumption 3, Q0 is uniquely maximized at θ0.

Similarly to Section 4.1, there are two sources of error in the sample objective

function Q̂n(θ) when approximating the true population objective function Q0(θ):

(1) sampling error, and (2) errors resulting from the finite number of iterations of the

operator T . To focus on the sampling error, we construct the following intermediate

objective function where the number of iterations m in Equation (11) goes to infinity:

Q̂∗
n(θ) =

1

n

n∑
i=1

J∑
j=1

yij ln
(
Prob∗j(xi; θ, Ĝ)

)
.

We use the homeomorphism in Proposition 1 to show that Q̂∗
n converges pointwise to

Q0 in probability. We then prove that Q̂∗
n is equicontinuous, which ensures its uniform

convergence to Q0. Lastly, we show that Q̂n converges uniformly in probability to

Q̂∗
n as the number of iterations approaches infinity, which implies that Q̂n converges

uniformly in probability to Q0, a key to establishing the consistency result. Further
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details of each step can be found in Appendix B.3.

Next, we show that the estimator defined in Equation (10) is asymptotically nor-

mal. Motivated by our discussion above, we first study the behavior of the estimator

when m tends to infinity for each n. Let

θ̂∗ = argmax
θ

Q̂∗
n(θ),

g∗(zi; θ, Ĝ) = ∇θ

( J∑
j=1

yij lnProb∗j(xi; θ, Ĝ)

)
,

where ∇θ denote the gradient operator with respect to θ. The estimator θ̂∗ solves the

first-order condition
1

n

n∑
i=1

g∗(zi; θ̂
∗, Ĝ) = 0.

Proving the asymptotic normality of a semiparametric two-step estimator typi-

cally requires a first-order expansion around the nonparametric estimator (see The-

orem 8.1 in Newey and McFadden (1994)). In our case, this involves expanding the

equation above around Ĝ. A standard argument would apply if Ĝ entered directly

into Equation (12). However, it enters through F−1, for which we lack an analytic

form. As a result, continuing to work with an infinite-dimensional distribution G̃

becomes extremely challenging.

To make the analysis tractable, we assume that the support of G̃ is finite. This

assumption is practically innocuous, as nonparametric estimators are always repre-

sented as finite-dimensional vectors in numerical applications. For instance, in con-

sumer demand estimation, G̃ represents a distribution over prices, which are measured

in discrete units (e.g., cents), so this assumption is reasonable.

Assumption 4. (i) supp(G̃) is finite. (ii) θ0 is in the interior of Θ. (iii) f is twice

continuously differentiable in θ. (iv) E∇θg
∗(z; θ0, G̃) is nonsingular. (v) The number

of iterations satisfies lim infn→+∞
m(n)
lnn

> 1
2
(ln(1/ρ̄))−1.

Assumption 4(ii)–(iv) are standard regularity conditions. Assumption 2–4(iv)

ensure that the estimator θ̂∗ is asymptotically normal. Assumption 4(v) requires that

the number of iterations increases rapidly enough for the error introduced by finite

iterations to become negligible compared to the error of θ̂∗. Particularly, it guarantees
√
n(θ̂ − θ̂∗)

p→ 0, which gives us the next result.
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Theorem 4 (Asymptotic Normality). Suppose that Assumption 2, 3, and 4 hold.

Then θ̂ is asymptotically normal and
√
n(θ̂ − θ0)

d→ N (0, V ).9 T
m(n)

Ĝ,θ̂
Ψ converges to

G in probability at rate
√
n.

Proof. See Appendix B.4.

5 Monte Carlo Simulations

To examine how our estimator for θ and the offered price distribution may perform

in practice, we conduct a Monte Carlo simulation experiment with J = 2. The utility

individual i derives from the two alterantives are specified as follows:

ui1 = −γ log(pi1) + ξ1 + βxi1 + εi,

ui2 = −γ log(pi2) + ξ2,

where pij and ξj are, respectively, the offered price and unobserved heterogeneity for

alternative j; xi1 ∈ {0, 1} is a binary observable with Pr(xi1 = 1) = 0.5 that shifts

individual i’s choice probabilities; and εi ∼ N(0, 1) is the error term. Throughout the

simulation exercises, we set the utility parameters as follows: γ = 1, ξ1 = 0, ξ2 = 1,

β = 0.5. Let yi ∈ {1, 2} denote the choice of individual i.

We consider five data generating processes for the offered prices. Let xi2 denote

the observable characteristic of individual i that enters the pricing equation. For

simplicity, we also restrict xi2 to take binary values from {0, 1}, with Pr(xi2 = 1) =

0.7.

DGP 1: log(pij) = δ0j + δjxi2 + ηij, where δ01 = 0.2, δ1 = 0.5, ηi1 ∼ N(0, 0.1), δ02 =

0.1, δ2 = 1, ηi2 ∼ N(0, 0.2).

DGP 2: log(pij) = δ0j + δjxi2 + ηij, where δ01 = 0.2, δ1 = 0.5, ηi1 ∼ EV (0, 0.1),

δ02 = 0.1, δ2 = 1, ηi2 ∼ EV (0, 0.2).

DGP 3: log(pij) = (δ0j + δjxi2)(1 + ηij), where δ01 = 0.2, δ1 = 0.5, ηi1 ∼ N(0, 0.1),

δ02 = 0.1, δ2 = 1, ηi2 ∼ N(0, 0.3).

DGP 4: log(pij) = exp ((δ0j + δjxi2)(1 + ηij)), where δ01 = 0.2, δ1 = 0.1, ηi1 ∼ N(0, 0.1),

δ02 = 0.1, δ2 = 0.3, ηi2 ∼ N(0, 0.2).

9See the analytical form of V in the proof of Lemma 7.
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DGP 5: log(pij) = (δ0j + δjxi2)(1 + ηij)
−1, where δ01 = 0.2, δ1 = 0.1, ηi1 ∼ N(0, 0.1),

δ02 = 0.1, δ2 = 0.3, ηi2 ∼ N(0, 0.2).

In DGP 1, the error term in the pricing equation is additively separable and follows

a normal distribution, which is commonly assumed in empirical applications. DGP

2 assumes instead that the error term follows an extreme value distribution, while in

DGP 3, we relax the homoskedasticity assumption. Finally, DGPs 4 and 5 consider

scenarios where the pricing function takes a nonseparable form.10

For each DGP, we simulate offered prices and individual choices, and assume

that the econometricians observe (yi, xi1, xi2, pi), where pi is the price of the chosen

alternative. We then apply our method from Section 4 to estimate the parameters

of the selection function, i.e., θ = (γ, ξ2, β) with ξ1 normalized to 0, along with

the offered price distribution for each alternative.11 For comparison, we employ the

classic two-step method, assuming that the pricing equations are linearly separable,

with an error term that is independent of xi2 and normally distributed. Under this

assumption, the two-step method misspecfies the pricing equation under DGPs 2–5.

For each design, we run 500 simulations of 1000 and 5000 observations.

We report Monte Carlo biases, standard deviations, and root mean squared errors

for θ using our method in the first three columns of Table 1. For the cumulative

distribution functions of log(price), we compute the integrated squared biases and

integrated mean squared errors, as shown in the first two columns of Table 2. These

results are based on a sample size of N = 1000. The results for N = 5000 are provided

in Tables 3–4 in Appendix C. Our estimator performs well in finite samples across all

DGPs we consider. The biases of our estimator are small, and the standard deviation

decreases as the sample size increases in all simulation designs.

Compared to the classic two-step method, our estimator outperforms the standard

approach in DGPs 2–5. Because our method allows for nonparametric estimation of

the offered price distributions, while the standard method misspecifies the pricing

equation, we achieve significantly lower integrated squared bias and mean squared

error for the cumulative distribution functions of log(price). This result can also be

10Although all the offer price distributions admit unbounded support, in simulation we shall
assume that the realized price range coincides with the true price range. Given a large sample size,
the realized price range supports almost all the probability mass of the offered price distribution.
Later we show that the estimation of the offered price distribution performs well.

11We estimate the cumulative distribution function of prices at 300 grid points.
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Table 1: Simulation Results for Utility Parameters: N = 1000

Functional Contraction Two-Step Method
Bias Std. Dev. RMSE Bias Std. Dev. RMSE

DGP 1
γ -0.0075 0.1958 0.1957 0.0027 0.2126 0.2124
ξ2 0.0021 0.0721 0.0721 0.0003 0.0980 0.0979
β -0.0010 0.0906 0.0905 0.0016 0.0929 0.0929

DGP 2
γ -0.0087 0.1990 0.1990 0.0196 0.2451 0.2457
ξ2 0.0021 0.0728 0.0728 0.0183 0.1203 0.1215
β -0.0049 0.0945 0.0946 0.0036 0.0960 0.0960

DGP 3
γ -0.0254 0.1603 0.1621 0.1704 0.2398 0.2940
ξ2 -0.0006 0.0702 0.0701 0.0097 0.0860 0.0864
β -0.0045 0.0930 0.0930 -0.0023 0.0947 0.0946

DGP 4
γ -0.0131 0.3485 0.3484 0.0368 0.3826 0.3840
ξ2 -0.0016 0.0677 0.0676 -0.0044 0.0731 0.0731
β -0.0045 0.0933 0.0933 -0.0040 0.0941 0.0941

DGP 5
γ 0.0551 0.9650 0.9656 0.1873 0.7830 0.8044
ξ2 -0.0023 0.0671 0.0671 0.0047 0.0675 0.0676
β -0.0050 0.0886 0.0886 -0.0050 0.0885 0.0886
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Table 2: Simulation Results for CDF of log(Price): N = 1000

Func. Contraction Two-Step Method
IBias2 IMSE IBias2 IMSE

DGP 1
F1(·|xi2 = 0) 0.0003 0.0029 0.0006 0.0211
F2(·|xi2 = 0) 0.0001 0.0006 0.0000 0.0016
F1(·|xi2 = 1) 0.0004 0.0032 0.0003 0.0125
F2(·|xi2 = 1) 0.0002 0.0013 0.0001 0.0042

DGP 2
F1(·|xi2 = 0) 0.0006 0.0032 0.0042 0.0269
F2(·|xi2 = 0) 0.0002 0.0006 0.0021 0.0040
F1(·|xi2 = 1) 0.0008 0.0037 0.0035 0.0177
F2(·|xi2 = 1) 0.0003 0.0014 0.0022 0.0070

DGP 3
F1(·|xi2 = 0) 0.0060 0.0086 0.0247 0.0501
F2(·|xi2 = 0) 0.0028 0.0032 0.0499 0.0525
F1(·|xi2 = 1) 0.0007 0.0033 0.0022 0.0119
F2(·|xi2 = 1) 0.0002 0.0013 0.0129 0.0170

DGP 4
F1(·|xi2 = 0) 0.0007 0.0033 0.0049 0.0304
F2(·|xi2 = 0) 0.0008 0.0012 0.0281 0.0303
F1(·|xi2 = 1) 0.0005 0.0046 0.0005 0.0161
F2(·|xi2 = 1) 0.0002 0.0011 0.0087 0.0112

DGP 5
F1(·|xi2 = 0) 0.0014 0.0034 0.0026 0.0226
F2(·|xi2 = 0) 0.0014 0.0018 0.0211 0.0234
F1(·|xi2 = 1) 0.0008 0.0058 0.0008 0.0192
F2(·|xi2 = 1) 0.0002 0.0011 0.0071 0.0086

Note: The IBias2 of a function h is calculated as follows. Let ĥr be the estimate of h from the
r-th simulated dataset, and h̄(x) = 1

R

∑R
r=1 ĥr(x) be the point-wise average over R simulations.

The integrated squared bias is calculated by numerically integrating the point-wise squared bias
(h̄(x)− h(x))2 over the distribution of x. The integrated MSE is computed in a similar way.
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Figure 1: CDF of log(price) for firms 1 and 2 (conditional on x = 0). The black, blue,
and red curves represent the true CDF, the CDF estimated using the two-step method,
and the CDF estimated using the functional contraction method, respectively. Solid
lines represent the CDFs for firm 1, while dashed lines represent those for firm 2.

visualized in Figure 1, where we plot the true CDFs of log(price) for firms 1 and 2,

alongside those obtained using our method and the two-step method.

For the two-step method, the misspecification of the pricing equation also creates

a severe bias in estimating the parameters in the selection function. In particular,

when the error term exhibits heteroskedasticity (DGP 3) or is nonseparable in the

pricing equation (DGPs 4–5), the bias for the price sensitivity parameter γ is large

and does not vanish as the sample size increases.

Another key advantage of our approach is that it does not require an instrument

to exogenously shift the selection probability. It is well known in the literature that

the two-step method is nearly unidentified when the same regressors are used in both
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the selection function and the outcome equation. This occurs because the inverse

Mills ratio is approximately linear over a wide range of its argument. In our sim-

ulations, when the regressor in the pricing equation is discrete, the bias correction

term becomes perfectly collinear with the regressor, rendering the two-step method

infeasible without an excluded variable in the selection equation.

In contrast, our approach does not require an excluded variable in the selection

equation. To illustrate this, we conduct a set of Monte Carlo simulations where

the excluded variable xi1 is removed from the indirect utility, using the same five

DGPs for log(price). The results for this specification are reported in Tables 5–6 in

Appendix C. As shown, our estimator performs well in finite samples, even without

an additional excluded variable to exogenously shift the selection probability. Our

estimator consistently shows low bias across different DGPs and exhibits a decreasing

standard deviation as the sample size increases.

Our method requires that the functional form of the selection function is known

to econometricians. To assess the performance of our estimator when the selection

function is misspecified, we conduct a series of Monte Carlo simulations. Specifically,

we consider a scenario where the econometrician assumes that ε follows a logistic

distribution, while it is actually generated from a normal distribution. In Tables

7–8 in Appendix C, we report the estimation results for the utility parameters and

CDFs of log(price) under this misspecification. Although we observe a 7–8% bias

in the utility parameters, our estimator for the offered price distributions performs

well. The integrated squared bias and mean squared errors of the CDFs remain close

to those in Table 2. This exercise suggests that our estimator for the offered price

distributions is robust to misspecification of the selection function, a valuable feature

in practice, especially when the econometrician lacks prior knowledge about the form

of the selection function.

Finally, we briefly discuss how our functional contraction performs in practice. We

compute the modulus ρ∗ across all five simulation designs. Except for DGP 2—where

the error term in the pricing equations is drawn from extreme value distributions,

resulting in a wider price range—the modulus in all other cases is quite small (for

example, ρ∗ = 0.37 in DGP 1).12 Consequently, our iteration process converges within

12The magnitude of the modulus depends heavily on the product of the price sensitivity parameter
γ and price range. In our Monte Carlo simulations, γ is normalized to be 1. In DGP 1, a price
range of approximately 2.5 leads to a small ρ∗ = 0.37. In empirical applications, the price sensitivity
parameter γ is around 10−3 (for example, see Cosconati et al., 2024). Then with a price range
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3–5 iterations. For DGP 2, although the modulus exceeds 1 (ρ∗ = 1.23), the iteration

process still performs well and converges to the same fixed point, even with different

initial values. This is not surprising, as Theorems 1 and 2 provide only sufficient

conditions for the contraction.

6 Applications

Our estimator introduced in Section 4 is broadly applicable to a variety of empirical

settings. It effectively addresses the challenge of selection bias, which arises when

only the outcomes of chosen alternatives are observed in the data. We impose no

parametric restrictions on the potential outcome distribution and allow it to vary

flexibly across alternatives. Moreover, the selection function in our model can incor-

porate alternative-specific unobserved heterogeneity and does not require an excluded

variable, which is desirable in many empirical settings. In the following section, we

discuss three types of empirical applications: consumer demand estimation, auctions

with missing bids, and Roy models.

6.1 Consumer Demand

The first application of our method is the standard differentiated product demand

estimation pioneered by Berry (1994) and Berry et al. (1995). In classic demand

models, the price of a product is often assumed to be uniform across all consumers

(e.g., the list price of a vehicle). But this assumption does not hold in contexts in-

volving price discrimination or personalized pricing (Sagl, 2023; Buchholz et al., 2020;

Dubé and Misra, 2023), discount negotiation (Goldberg, 1996; Allen et al., 2014), or

risk-based pricing (Crawford et al., 2018; Cosconati et al., 2024). In these contexts,

researchers can relatively easily gather data on the transaction prices consumers pay,

but it is challenging to gain access to competing prices offered to consumers.

In a companion paper with coauthors (Cosconati et al., 2024), we apply our

method to estimate demand and insurance companies’ information technology in

the auto insurance market, where only the transaction prices of selected insurance

plans are observed. In this market, insurance companies employ risk-based pricing.

For each consumer, an insurance company generates a noisy estimate of their risk

around 2500 euros, the modulus remains small.
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type and prices accordingly. Our goal is to quantify the heterogeneity in insurers’

information technology, as measured by the dispersion of their risk estimates. Since

the shape of the offered price distribution reflects the distribution of risk estimates,

allowing for flexible estimation of the offered price distribution is crucial.

We nonparametrically estimate each insurance company’s offered price distribu-

tion using our functional contraction approach. In this application, we assume that

the offered prices across different firms are independent, conditional on the consumer’s

true risk type, which is estimated using a panel of ex-post realized claim records over

multiple years.

In Figure 2, we plot the nonparamtrically estimated density functions for prices

from several firms. These distributions vary significantly, with noticeable differences

in mean, variance, and skewness, across firms, suggesting substantial heterogeneity

in their information technology and pricing strategies. Building on this estimation,

we further estimate the price sensitivity parameter, firm-specific unobserved hetero-

geneity (e.g., service quality or brand loyalty), and each firm’s information precision.

Our findings provides key insight for analyzing competition under various forms of

supply-side heterogeneity in this market (Cosconati et al., 2024).

From a practical point of view, our iterative procedure to numerically solve for

the offered price distributions given demand parameters is easy to implement and

performs well in practice. In our empirical application using data from 11 insurers,

the iterative algorithm converges very quickly, typically requiring only 6–7 iterations.

6.2 Auctions with Missing Bids

In certain auctions, not all bids are available, either due to the auction’s structure or

incomplete data. For instance, in Dutch auctions, only the winning bid is recorded,

as the auction concludes as soon as the first bid is placed. Allen et al. (2024) study

FDIC auctions for insolvent banks, where only the winning and the second-highest

bids are recorded. Similarly, U.S. Forest Service timber auctions record only the top

fourteen bids, while the Washington State Department of Transportation publishes

only the three lowest bids for their highway procurement auctions.

The existing literature has shown that certain types of auction models can be

identified using only winning bids or transaction prices. For example, Athey and

Haile (2002) show that the symmetric IPV models are identified with the transaction
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price by exploiting a one-to-one mapping between an order statistic and its parent

distribution. Komarova (2013) analyzes asymmetric second-price auctions where only

the winning bids and the winner’s identity are observed. A related result for general-

ized competing risks models can be found in Meilijson (1981). More recently, Guerre

and Luo (2019) examine nonparametric identification of symmetric IPV first-price

auctions with only winning bids, accounting for unobserved competition.

Our method is valuable for nonparametrically recovering the complete bid dis-

tribution and the auctioneer’s scoring weights in multi-attribute auctions when the

data contain only the winning bids and winner’s identity, particularly in the presence

of bidder asymmetry.13 Auctions in many settings have used the scoring rule that

departs from the lowest bid criterion by accounting for quality differences (Asker

and Cantillon, 2008; Lewis and Bajari, 2011; Nakabayashi, 2013; Yoganarasimhan,

2016; Takahashi, 2018; Krasnokutskaya et al., 2020; Allen et al., 2024). Our selection

model is closely related to Krasnokutskaya et al. (2020), which employs a discrete

choice framework with unknown, buyer-specific weights in the scoring rule. We allow

the scoring rule to depend on both observed (xij) and unobserved bidder heterogeneity

13Flexibly accommodating bidder asymmetries is known to be challenging in auction models (see
discussions in the handbook chapter by Athey and Haile (2007)). Bidder asymmetries may arise
from factors such as distance to the contract location (Flambard and Perrigne, 2006), information
advantages (Hendricks and Porter, 1988; De Silva et al., 2009), varying risk attitudes (Campo, 2012),
or strategic sophistication (Hortaçsu et al., 2019).
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(ξj), with the error term (εij) capturing uncertainty in the scoring rule.14

Beyond independent private value models, our method can be applied to certain

common value auction models, such as the mineral rights model, where bidders’

signals are assumed to be independent conditional on the common value. In these

auctions, we can recover the bid distributions conditional on the ex-post realized

common value.

6.3 Roy Models

Another important application of our method is estimating Roy models (Roy, 1951)

in labor market contexts. Variants of the Roy model have been widely used in the

literature to study decisions such as whether to continue schooling (Willis and Rosen,

1979), which occupation to pursue (Heckman and Sedlacek, 1985), whether to join a

union (Lee, 1978), and whether to migrate (Borjas, 1987). Our selection model falls

within the framework of “Generalized Roy Model”, as defined by Heckman and Vyt-

lacil (2007). We allow the utility that individual i gains from alternative j to depend

not only on prices (or wages in labor market contexts) but also on non-pecuniary

aspects of the alternative, either observable or unobservable to the econometrician.

The comparison between our approach and standard two-step methods for estimat-

ing Roy models has already been discussed in the introduction; therefore, we do not

reiterate it here.

7 Conclusion

We introduce a novel method for estimating nonseparable selection models when only

a selected sample of outcomes is observed. We show that potential outcome distribu-

tions can be nonparametrically identified from the observed distribution of selected

outcomes, given a selection function. We achieve this by constructing an operator

whose fixed point represents the potential outcome distributions and proving that this

operator is a functional contraction. Building on this theoretical result, we propose a

two-step semiparametric maximum likelihood estimator for both the selection func-

tion and potential outcome distributions. The consistency and asymptotic normality

14Other recent papers that consider unknown weights in the scoring rule include Takahashi (2018)
and Allen et al. (2024).
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of the proposed estimator are established.

Our approach fundamentally differs from the classic two-step method for address-

ing sample selection bias. We allow the outcome equation to be fully nonparametric

and nonseparable in error terms. Our goal is to recover the entire distribution of

potential outcomes rather than focusing on specific moments or quantiles. In essence,

we correct for sample selection bias across the entire distribution of potential out-

comes by examining how the bias is systematically generated by the selection model.

This approach allows for fully heterogeneous effects of covariates on outcomes, which

is a crucial feature for empirical analysis, as discussed in Chernozhukov et al. (2023).

Another key advantage of our approach is that it does not rely on instruments to ex-

ogenously shift selection probabilities, which are often challenging to find in empirical

settings, or on identification-at-infinity arguments. Our approach also accommodates

asymmetry in outcome distributions across alternatives and flexibly incorporates un-

observed alternative-specific heterogeneity in the selection model.

We find that the proposed estimation strategy performs well in both simulations

and real-world data applications (see our demand estimation using insurance mar-

ket data in Cosconati et al. (2024)). Moreover, our approach is straightforward to

implement and computationally efficient, making it highly appealing to empirical re-

searchers. The estimator can be readily applied to a variety of empirical settings

where only a selected sample of outcomes is observed, including consumer demand

models with only transaction prices, auctions with incomplete bid data, and various

selection models in labor economics. Our method is particularly valuable in applica-

tions where the entire distribution of outcomes is of interest.
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A Connection to Quantal Response Equilibria

In this section, we connect our result to the quantal response equilibria (McKelvey

and Palfrey, 1995).

Let us rename our variables. There is a set J = {1, 2, · · · , J} of players. For each

player j ∈ J , there is a finite set Pj = {pj1, pj2, · · · , pjnj
} ⊂ [p

j
, pj] consisting of nj

pure strategies. A payoff function f :
∏

j∈J Pj → ∆(J ) assigns payoff fj to player

j. Let gj ∈ ∆Pj denote player j’ mixed strategy and g =
∏

j∈J gj. The player j’s

expected payoff for playing pure strategy pj, given other players’ strategy g−j, is

Prj(pj; g) =

∫
p−j

fj(pj,p−j)
∏
k ̸=j

gk(pk).

We define the quantal response operator T :
∏

j ∆(Pj) →
∏

j ∆(Pj) by

(Tg)j(pj) =
exp(−λPrj(pj; g))∑

pj∈Pj
exp(−λPrj(pj; g))

.

In words, given the expected payoff Prj(pj; g), player j’s probability of playing strat-

egy pj is proportional to exp(−λPrj(pj; g)). Lemma 1 in McKelvey and Palfrey (1995)

states that operator T is a contraction for a sufficiently small λ. This is intuitive as

T sends probability measures to the center of the simplex when λ is small.

Note that our operator T is quite different. By definition,

(TΨ)j(p) =

∫ p

p
j

dG̃j(y)/Prj(y; Ψ)∫ pj
p
j

dG̃j(y)/Prj(y; Ψ)
.

Given the expected probability Pr, to compute the new measure, each pj is weighted

by dG̃(pj), where G̃ can be any measure. This distinction complicates our problem.

With the sup norm, McKelvey and Palfrey (1995) show that T is a contraction for

sufficiently small λ. However, the presence of G̃ renders the sup norm not suitable

for our task. Instead, our metric d is designed specifically to deal with G̃.
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B Omitted Proofs

B.1 Proof of Theorem 1

Lemma 1. For two probability measures S,Q ∈ ∆(Y ), δ > 0,

sup
d(S,Q)≤δ

||S −Q||TV ≤ δ/2

Proof of Lemma 1. We first consider the case where Y contains only two elements.

Then we can identify S with (p, 1) for some p ∈ [0, 1]. We can pin down the Q that

achieves the maximum ||S − Q||TV under the constraint that d(S,Q) ≤ δ. At the

maximum, this constraint is binding. Let Q = (p− ϵ, 1). By d(S,Q) = δ,

ln
p

p− ϵ
+ ln

1− p+ ϵ

1− p
= δ (13)

We can solve for ϵ

ϵ =
p(1− p)(eδ − 1)

p+ (1− p)eδ

Plug this into the total variation norm

1

2
||S −Q||TV = ϵ = (eδ − 1)[

1

1− p
+

eδ

p
]−1

Then we take sup over p. Note that 1
1−p

+ eδ

p
as a function of p is convex and achieves

a unique minimum at p = eδ/2

1+eδ/2
. As a result,

sup
d(S,Q)≤δ

1

2
||S −Q||TV =

(eδ − 1)

(1 + eδ/2)2
=

eδ/2 − 1

eδ/2 + 1

To show supd(S,Q)≤δ ||S −Q||TV ≤ δ/2, it suffices to show that for all δ ≥ 0,

eδ/2 − 1

eδ/2 + 1
≤ δ/4
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which holds true.15 Note that the limiting case δ → 0, p = 1
2
, ϵ = δ

4
achieves this

upper bound.

Now we prove this lemma for a general space Y and general CDF. For any S,Q ∈
∆(Y ) and d(S,Q) ≤ δ. Define two functions

PQ(S,Q) =

∫
y∈Y : dS

dQ
(y)≥1

dQ(y)

PS(S,Q) =

∫
y∈Y : dS

dQ
(y)≥1

dS(y)

Note that
PS(S,Q)

PQ(S,Q)
≤ ess sup

y∈Y

dS

dQ
(y)

1− PQ(S,Q)

1− PS(S,Q)
≤ ess sup

y∈Y

dQ

dS
(y)

which implies

ln
PS(S,Q)

PQ(S,Q)
+ ln

1− PQ(S,Q)

1− PS(S,Q)
≤ ess sup ln

dS

dQ
(y) + ess sup ln

dQ

dS
(y) ≤ δ

since d(S,Q) ≤ δ. Observe that here PS(S,Q) faces the same constraint as p in the

two-point support case in Equation (13). Thus, the total variation norm

||S −Q||TV = 2[PS(S,Q)− PQ(S,Q)] ≤ δ/2.

15To see this,

eδ − 1

eδ + 1
≤ δ/2

⇔1− 2

eδ + 1
≤ δ

2

⇔2− δ ≤ 4

eδ + 1

which is true since function 4
eδ+1

is convex and is tangent to the function 2− δ at δ = 0.
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Proof of Theorem 1. Recall that

Prj(pj; Ψ) =

∫
p−j

fj(pj,p−j)
∏
k,k ̸=j

dΨk(pk).

Define the ratio function

Rj(pj; Ψ,Φ) =
Prj(pj; Ψ)

Prj(pj; Φ)
.

We show that for all Ψ,Φ ∈
∏

j ∆([p
j
, pj]),

D(TΨ, TΦ) ≤ ρD(Ψ,Φ).

Given Equation (7) and the definition of the metric d, we have

d((TΨ)j, (TΦ)j) ≤ sup
pj

lnRj(pj; Ψ,Φ)− inf
pj

lnRj(pj; Ψ,Φ).

The equality holds when G̃j admits full support on [p
j
, pj]. Thus, it suffices to show

that for all j ∈ J

sup
pj

lnRj(pj; Ψ,Φ)− inf
pj

lnRj(pj; Ψ,Φ) ≤ ρD(Ψ,Φ) (14)

We evaluate how the log ratio changes with pj,

d lnRj(pj; Ψ,Φ)

dpj
=

∫
p−j

∂fj(pj ,p−j)

∂pj

∏
k,k ̸=j dΨk(pk)∫

p−j
fj(pj,p−j)

∏
k,k ̸=j dΨk(pk)

−

∫
p−j

∂fj(pj ,p−j)

∂pj

∏
k,k ̸=j dΦk(pk)∫

p−j
fj(pj,p−j)

∏
k,k ̸=j dΦk(pk)

(15)

=

∫
p−j

∂ ln fj(pj ,p−j)

∂pj
fj

∏
k,k ̸=j dΨk(pk)∫

p−j
fj(pj,p−j)

∏
k,k ̸=j dΨk(pk)

−

∫
p−j

∂ ln fj(pj ,p−j)

∂pj
fj

∏
k,k ̸=j dΦk(pk)∫

p−j
fj(pj,p−j)

∏
k,k ̸=j dΦk(pk)

(16)
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Next, we define a new measure fjΨ−j ∈ ∆(
∏

k ̸=j[pk, pk])

fjΨ−j(y) =

∫ y

p−j

fj(pj,p−j)
∏

k,k ̸=j dΨk(pk)∫
p−j

fj(pj,p−j)
∏

k,k ̸=j dΨk(pk)
.

Similarly, we define measure fjΦ−j ∈ ∆(
∏

k ̸=j[pk, pk]). (Both measures depend on

pj.) Given these measures, we can rewrite Equation (16)

d lnRj(pj; Ψ,Φ)

dpj
= E

p−j∼fjΨ−j

∂ ln fj(pj,p−j)

∂pj
− E

p−j∼fjΦ−j

∂ ln fj(pj,p−j)

∂pj
(17)

=

∫
p−j

∂ ln fj(pj,p−j)

∂pj
[dfjΨ−j(p−j)− dfjΦ−j(p−j)]. (18)

We shall upper bound this integral under the constraint D(Ψ,Φ) ≤ δ for some

arbitrary δ > 0.

sup
D(Ψ,Φ)≤δ

∣∣∣∣d lnRj(pj; Ψ,Φ)

dpj

∣∣∣∣ = sup
D(Ψ,Φ)≤δ

∣∣∣∣ ∫
p−j

∂ ln fj(pj,p−j)

∂pj
[dfjΨ−j(p−j)− dfjΦ−j(p−j)]

∣∣∣∣
≤Mj sup

D(Ψ,Φ)≤δ

1

2
||fjΨ−j − fjΦ−j||TV

The inequality follows by interpreting the integral as a transportation problem. We

transport the mass from distribution fjΦ−j to fjΨ−j. The function
∂ ln fj(pj ,p−j)

∂pj
is

the height. Then the integral is the change in the gravitational potential, which is

bounded by the product of the total transportation mass 1
2
||fjΨ−j − fjΦ−j||TV and

the largest height difference, Mj. Note that given D(Ψ,Φ) ≤ δ,

d(fjΨ−j, fjΦ−j) = d(Ψ−j,Φ−j) ≤ (J − 1)δ,

as for all j, d(Ψj,Φj) ≤ D(Ψ,Φ) ≤ δ. Thus, for all δ > 0,

sup
D(Ψ,Φ)≤δ

∣∣∣∣d lnRj(pj; Ψ,Φ)

dpj

∣∣∣∣ ≤Mj sup
D(Ψ,Φ)≤δ

1

2
||fjΨ−j − fjΦ−j||TV

≤Mj sup
d(fjΨ−j ,fjΦ−j)≤(J−1)δ

1

2
||fjΨ−j − fjΦ−j||TV

≤Mj
1

4
(J − 1)δ (19)
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where the last inequality follows by Lemma 1. By Lemma 2,

sup
Ψ,Φ

∣∣∣∣d lnRj(pj; Ψ,Φ)

dpj

1

D(Ψ,Φ)

∣∣∣∣ = sup
D(Ψ,Φ)≤δ

∣∣∣∣d lnRj(pj; Ψ,Φ)

dpj

1

D(Ψ,Φ)

∣∣∣∣ ≤ J − 1

4
Mj.

To see why the inequality holds, towards a contradiction, suppose it does not hold.

Then there exists Ψ̃, Φ̃ with D(Ψ̃, Φ̃) = δ1 and∣∣∣∣d lnRj(pj; Ψ̃, Φ̃)

dpj

1

D(Ψ̃, Φ̃)

∣∣∣∣ > J − 1

4
Mj

∣∣∣∣d lnRj(pj; Ψ̃, Φ̃)

dpj

∣∣∣∣ > J − 1

4
MjD(Ψ̃, Φ̃)

which implies that

sup
D(Ψ,Φ)≤δ1

∣∣∣∣d lnRj(pj; Ψ,Φ)

dpj

1

D(Ψ,Φ)

∣∣∣∣ ≥ ∣∣∣∣d lnRj(pj; Ψ̃, Φ̃)

dpj

1

D(Ψ̃, Φ̃)

∣∣∣∣ > J − 1

4
Mj

contradicting Equation (19) which holds for all δ > 0.

By the fundamental theorem of calculus, for all pj, p
′
j ∈ [p

j
, pj],

sup
Ψ,Φ

∣∣∣∣ lnRj(pj; Ψ,Φ)− lnRj(p
′
j; Ψ,Φ)

D(Ψ,Φ)

∣∣∣∣ ≤ J − 1

4
Mj(pj − p

j
)

Finally, for all j ∈ J , all Ψ, Φ,

sup
pj

lnRj(pj; Ψ,Φ)− inf
pj

lnRj(pj; Ψ,Φ) ≤ ρD(Ψ,Φ).

Lemma 2. For all δ > 0,

sup
Ψ,Φ

∣∣∣∣d lnRj(pj; Ψ,Φ)

dpj

1

D(Ψ,Φ)

∣∣∣∣ = sup
Ψ,Φ,D(Ψ,Φ)≤δ

∣∣∣∣d lnRj(pj; Ψ,Φ)

dpj

1

D(Ψ,Φ)

∣∣∣∣. (20)

Proof of Lemma 2. We prove this lemma through a continuous interpolation. Fixing

any Ψ,Φ ∈
∏

j ∆([p
j
, pj]), we define a continuous interpolation Υ(·;λ) ∈

∏
j ∆([p

j
, pj])
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parametrized by λ ∈ [0, 1]:

Υj(pj;λ) =

∫ pj
p
j

dΦj(y) ·
(

dΨj

dΦj
(y)

)λ

∫ pj
p
j

dΦj(y) ·
(

dΨj

dΦj
(y)

)λ

Notice that Υ(·; 0) = Φ, Υ(·; 1) = Ψ. Moreover,

d(Υj(·;λ1),Υj(·;λ2)) = |λ1 − λ2|d(Ψj,Φj).

Thus, in our metric space, Υ(·;λ) is an interpolation that is linear in the metric.16

That is, for all λ1, λ2 ∈ [0, 1],

D(Υ(·;λ1),Υ(·;λ2)) = |λ1 − λ2|D(Ψ,Φ).

We define a new function by adapting Equation (17).

k(λ) = E
p−j∼fjΥ−j(·;λ)

∂ ln fj(pj,p−j)

∂pj
− E

p−j∼fjΦ−j

∂ ln fj(pj,p−j)

∂pj
.

Notice that when λ = 1, this reduces to Equation (17). As k is continuously differ-

entiable, there exists 0 ≤ λ < λ+ dλ ≤ 1 and dλ ≤ δ
D(Ψ,Φ)

such that

|k(1)| ≤
∣∣∣∣k(λ+ dλ)− k(λ)

dλ

∣∣∣∣
16Note that Υ(·;λ) is also a linear interpolation in the Kullback-Leibler divergence, since

DKL(Φ||Υ(·;λ)) = λDKL(Φ||Ψ)

and
DKL(Ψ||Υ(·;λ)) = (1− λ)DKL(Ψ||Φ).
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This is equivalent to∣∣∣∣ k(1)

D(Ψ,Φ)

∣∣∣∣ ≤ ∣∣∣∣k(λ+ dλ)− k(λ)

dλD(Ψ,Φ)

∣∣∣∣
⇔

∣∣∣∣d lnRj(pj; Ψ,Φ)

dpj

1

D(Ψ,Φ)

∣∣∣∣ ≤ ∣∣∣∣d lnRj(pj; Υ(·;λ+ dλ),Υ(·;λ))
dpj

1

dλD(Ψ,Φ)

∣∣∣∣
⇔

∣∣∣∣d lnRj(pj; Ψ,Φ)

dpj

1

D(Ψ,Φ)

∣∣∣∣ ≤ ∣∣∣∣d lnRj(pj; Υ(·;λ+ dλ),Υ(·;λ))
dpj

1

D(Υ(·;λ+ dλ),Υ(·;λ))

∣∣∣∣
As D(Υ(·;λ+ dλ),Υ(·;λ)) = dλD(Ψ,Φ) ≤ δ, we have established Equation (20).

B.2 Proof of Theorem 2

Proof of Theorem 2. With Assumption 1, we can provide tighter bound on the right-

hand side of Equation (18).

sup
D(Ψ,Φ)≤δ

∣∣∣∣d lnRj(pj; Ψ,Φ)

dpj

∣∣∣∣
= sup

D(Ψ,Φ)≤δ

∣∣∣∣ ∫
p−j

∂ ln fj(pj,p−j)

∂pj
[dfjΨ−j(p−j)− dfjΦ−j(p−j)]

∣∣∣∣
≤
[
∂ ln fj(pj,p−j)

∂pj
−

∂ ln fj(pj,p−j
)

∂pj

]
sup

D(Ψ,Φ)≤δ

1

2
||fjΨ−j − fjΦ−j||TV

≤
[
∂ ln fj(pj,p−j)

∂pj
−

∂ ln fj(pj,p−j
)

∂pj

]
J − 1

4
δ

By Lemma 2,

sup
Ψ,Φ

∣∣∣∣d lnRj(pj; Ψ,Φ)

dpj

1

D(Ψ,Φ)

∣∣∣∣ ≤ J − 1

4

[
∂ ln fj(pj,p−j)

∂pj
−

∂ ln fj(pj,p−j
)

∂pj

]
By the fundamental theorem of calculus, for all pj, p

′
j ∈ [p

j
, pj],

sup
Ψ,Φ

∣∣∣∣ lnRj(pj; Ψ,Φ)− lnRj(p
′
j; Ψ,Φ)

D(Ψ,Φ)

∣∣∣∣ ≤ ρ∗

Finally, for all j ∈ J , all Ψ, Φ,

sup
pj

lnRj(pj; Ψ,Φ)− inf
pj

lnRj(pj; Ψ,Φ) ≤ ρ∗D(Ψ,Φ).
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B.3 Proof of Theorem 3

Proof of Proposition 1. Suppose ρ < 1. By Theorem 1, the operator T is a con-

traction. This implies that F is surjective, since for any G̃, we can take a Ψ ∈∏
j ∆([p

j
, pj]),

F ( lim
n→∞

T nΨ) = G̃.

Moreover, F is injective. Towards a contradiction, suppose F maps both G1 ̸= G2 ∈∏
j ∆([p

j
, pj]) to the same G̃. Then both G1 and G2 are fixed points for operator T ,

contradicting contraction.

The mapping F is continuous by Equation (1) and (2). Take two offered distri-

butions G and G′. By Equation (2) and the definition of our metric,

d(F (G)j, F (G′)j) = ln ess sup
p∈[p

j
,pj ]

(
dGj

dG′
j

(p)
Prj(p;G)

Prj(p;G′)

)
+ ln ess sup

p∈[p
j
,pj ]

(
dG′

j

dGj

(p)
Prj(p;G

′)

Prj(p;G)

)
≤ ln ess sup

p∈[p
j
,pj ]

dGj

dG′
j

(p) + ln ess sup
p∈[p

j
,pj ]

dG′
j

dGj

(p)

+ ln sup
p∈[p

j
,pj ]

(
Prj(p;G)

Prj(p;G′)

)
+ ln sup

p∈[p
j
,pj ]

(
Prj(p;G

′)

Prj(p;G)

)
≤ D(G,G′) + ρD(G,G′)

where the last inequality is by Equation (14). Consequently,

D(F (G), F (G′)) ≤ (1 + ρ)D(G,G′)

F is Lipschitz continuous with Lipschitz constant 1 + ρ.

Next, we show F−1 is Lipschitz continuous. Take two selected distributions G̃ ̸=
G̃′ ∈

∏
j ∆([p

j
, pj]) where G̃ = F (G). Let TG̃ and TG̃′ denote the corresponding

operator T . Here we express dependence on the selected distribution. Note that

D(G̃, G̃′) = D(TG̃G, TG̃′G) = D(G, TG̃′G)

where the first equality is by the definition of the operator T and the metric D, while
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the second equality is by G being a fixed point of TG̃. Observe that

D(T k
G̃′G, T k+1

G̃′ G) ≤ ρkD(G, TG̃′G) = ρkD(G̃, G̃′)

D(F−1(G̃), F−1(G̃′)) = D(G,F−1(G̃′)) =D(G, T∞
G̃′G)

≤
∞∑
k=0

D(T k
G̃′G, T k+1

G̃′ G)

≤
∞∑
k=0

ρkD(G̃, G̃′)

=
1

1− ρ
D(G̃, G̃′)

where the first inequality is by triangular inequality. This proves that F−1 is Lipschitz

continuous with Lipschitz constant 1
1−ρ

.

For proofs below, it suffices to prove the case without variable x. So we shall

drop it. We next prove the consistency result (Proposition 3). The proof requires a

combination of Lemma 3-6 below. We first collect useful notations below. Let

Q0(θ) =
∑
j

ln
(
Prob∗j(θ, G̃)

) ∫
p

fj(p; θ0)dG(p).

Q̂∗
n(θ) =

1

n

n∑
i=1

J∑
j=1

yij ln
(
Prob∗j(θ, Ĝ)

)
,

P rob∗j(θ, Ĝ) =

∫
p

fj(p; θ)dF
−1(Ĝ, θ)(p).

Q̂n,m(θ) =
1

n

n∑
i=1

J∑
j=1

yij ln
(
Probj(θ, Ĝ,m)

)
,

P robj(θ, Ĝ,m) =

∫
p

fj(p; θ)d
(
Tm
Ĝ,θ

Ψ
)
(p).

Q̂n(θ) =
1

n

n∑
i=1

J∑
j=1

yij ln
(
Probj(θ, Ĝ,m(n))

)
,

g∗(zi, θ, Ĝ) = ∇θ

( J∑
j=1

yij lnProb∗j(θ, Ĝ)

)
,
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g(zi, θ, Ĝ, n) = ∇θ

( J∑
j=1

yij lnProbj(θ, Ĝ,m(n))

)
,

Lemma 3. F−1(Ĝ, θ) is continuous in θ.

Proof of Lemma 3. Let θ, θ′ ∈ Θ. Let

G̃ = F (G; θ)

G′ = F−1(G̃; θ′)

G̃′ = F (G′; θ).

As θ′ → θ, by F (G′; θ) being continuous in θ, G̃ → G̃′. By F−1(G̃; θ) being continuous

in G̃ (Proposition 1), F−1(G̃; θ) → F−1(G̃′; θ). This is equivalent to G′ → G, which

is F−1(G̃; θ′) → F−1(G̃; θ). This implies that F−1 is continuous in θ.

For the next lemma, we view F−1(θ; Ĝ) as a function of θ parametrized by Ĝ.

Lemma 4. The function F−1(θ; Ĝ) is equicontinuous in θ, i.e., for all θ ∈ Θ, ϵ > 0,

there exists a δ > 0 such that for all |θ′ − θ| < δ, Ĝ ∈
∏

j ∆([p
j
, pj]),

D(F−1(θ; Ĝ), F−1(θ′; Ĝ)) ≤ ϵ.

Proof of Lemma 4. Since the function f is continuous on a compact set
∏

j[pj, pj]×Θ

and the image of f is in the interior of the simplex, there exists f and f , 0 < f ≤ f < 1

such that for all j ∈ J , θ ∈ Θ, p ∈
∏

j[pj, pj],

f < fj(p; θ) < f.

Consequently, for all j ∈ J , θ ∈ Θ, pj ∈ [p
j
, pj], G ∈

∏
j ∆([p

j
, pj]),

f < Prj(pj;G, θ) < f. (21)

Moreover, since the function f is continuous on a compact set
∏

j[pj, pj] × Θ, f is

uniformly continuous. Thus, for any ϵ′ > 0, there exists a δ′ > 0 such that for all

j ∈ J , p ∈
∏

j[pj, pj], θ, θ
′ ∈ Θ with |θ − θ′| < δ′,

|fj(p, θ)− fj(p, θ
′)| < ϵ′.
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Therefore, for all j ∈ J , pj ∈ [p
j
, pj], G ∈

∏
j ∆([p

j
, pj]), θ, θ

′ ∈ Θ with |θ − θ′| < δ′,

|Prj(pj;G, θ)− Prj(pj;G, θ′)|

=

∣∣∣∣ ∫
p−j

[fj(pj,p−j; θ)− fj(pj,p−j; θ
′)]

∏
k,k ̸=j

dGk(pk)

∣∣∣∣ < ϵ′. (22)

Take an arbitrary Ĝ ∈
∏

j ∆([p
j
, pj]). Let Gθ = F−1(θ; Ĝ), Gθ′ = F−1(θ′; Ĝ).

Let Tθ and Tθ′ be the operator T associated with selected distribution Ĝ, when the

parameter is θ and θ′, respectively: for any Ψ ∈
∏

j ∆([p
j
, pj]),

(TθΨ)j(p) =

∫ p

p
j

dĜj(y)/Prj(y; Ψ, θ)∫ pj
p
j

dĜj(y)/Prj(y; Ψ, θ)
.

By the definition of metric D,

D(TθGθ, Tθ′Gθ) ≤ max
j

[
sup
p

ln
Prj(p;Gθ, θ)

Prj(p;Gθ, θ′)
+ sup

p
ln

Prj(p;Gθ, θ
′)

Prj(p;Gθ, θ)

]
.

By Equation (21) and (22), for all Ĝ ∈
∏

j ∆([p
j
, pj]), θ, θ

′ ∈ Θ with |θ − θ′| < δ′,

D(TθGθ, Tθ′Gθ) ≤ 2 ln
f + ϵ′

f
,

D(F−1(θ; Ĝ), F−1(θ′; Ĝ)) =D(Gθ, T
∞
θ′ Gθ)

≤
∞∑
k=0

D(T k
θ′Gθ, T

k+1
θ′ Gθ)

≤
∞∑
k=0

ρ̄kD(Gθ, Tθ′Gθ)

=
1

1− ρ̄
D(TθGθ, Tθ′Gθ)

≤ 2

1− ρ̄
ln

f + ϵ′

f
.

Finally, for any ϵ > 0, let ϵ′ be such that 2
1−ρ̄

ln
f+ϵ′

f
= ϵ. The δ′ corresponding to this

ϵ′ is the desired δ in the statement of the Lemma.
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Lemma 5. Q̂∗
n(θ) converges uniformly in probability to Q0(θ).

Proof of Lemma 5. By Lemma 4 and the uniform continuity of f , for all j, Prob∗j(θ; Ĝ)

is equicontinuous in θ, parametrized by Ĝ. That is, for all θ ∈ Θ, ϵ > 0, there exists

a δ > 0 such that for all |θ′ − θ| < δ, Ĝ ∈
∏

j ∆([p
j
, pj]),

|Prob∗j(θ; Ĝ)− Prob∗j(θ
′; Ĝ)| ≤ ϵ.

Consequently, by Equation (21), for all θ ∈ Θ, ϵ > 0, there exists a δ > 0 such that

for all |θ′ − θ| < δ, {zi}ni=1,

|Q̂∗
n(θ)− Q̂∗

n(θ
′)| ≤ ln

f + ϵ

f
.

Thus, Q̂∗
n(θ) is equicontinuous in θ.

For all θ ∈ Θ, Q̂∗
n(θ) converges in probability to Q0(θ), by the weakly law of large

numbers, Ĝ
p→ G̃, and F−1 being continuous (Proposition 1). Lastly, Q̂∗

n(θ) converges

uniformly in probability to Q0(θ), as Q̂
∗
n is equicontinuous in θ (Lemma 2.8 in Newey

and McFadden (1994)).

Lemma 6. Q̂n(θ) converges uniformly in probability to Q0(θ).

Proof of Lemma 6. Pick a Ψ ∼ Ĝ.17 Fix some ϵ′ > 0. As Ĝ
p→ G̃, there exists some

δ(n) → 0 as n → ∞ such that

D(Ĝ, G̃) < ϵ′ with probability above 1− δ(n).

Moreover, with probability approaching 1, we have Ĝ ∼ G̃ and thus Ψ ∼ G. Given

G̃, let

D = max
θ∈Θ,D(Ĝ,G̃)<ϵ′

D(Ψ, F−1(Ĝ; θ)) ≤ max
θ∈Θ

D(Ψ, F−1(G̃; θ)) +
ϵ′

1− ρ̄

where the second inequality follows by for all θ, F−1(G̃; θ) being Lipschitz continuous

in G̃ with Lipschitz constant 1
1−ρ̄

and the triangle inequality. Note that with proba-

bility approaching 1, maxθ∈Θ D(Ψ, F−1(G̃; θ)) is well-defined, since (1). Ψ ∼ G̃ with

17Even if Ψ is not equivalent to Ĝ, TĜΨ is equivalent to Ĝ.
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probability approaching 1, (2). F−1(G̃; θ) is continuous in θ by Lemma 3, (3). metric

D is continuous and Θ is compact.

Next, I show that with probability above 1 − δ(n), Q̂n,m → Q̂∗
n uniformly in

probability as m → +∞, and the convergence speed does not depend on n. Fix some

n. Note

Probj(θ, Ĝ,m)− Prob∗j(θ, Ĝ) =

∫
p

fj(p; θ)d
(
Tm
Ĝ,θ

Ψ− F−1(Ĝ, θ)
)
(p).

With probability above 1− δ(n), we have D(Ĝ, G̃) < ϵ′,

D(Tm
Ĝ,θ

Ψ, F−1(Ĝ, θ)) ≤ ρ̄mD(Ψ, F−1(Ĝ, θ)) ≤ ρ̄mD

∣∣Probj(θ, Ĝ,m)− Prob∗j(θ, Ĝ)
∣∣ ≤ ∣∣∣∣ sup

D(Φ,Υ)≤ρ̄mD

∫
p

fj(p; θ)d
(
Φ−Υ

)
(p)

∣∣∣∣
≤ (f − f)

1

2
sup

D(Φ,Υ)≤ρ̄mD

||Φ−Υ||TV

≤ (f − f)
1

2

1

2
Jρ̄mD

where the last inequality is by applying Lemma 1 to the product measure. (Here we

have an additional factor of J .18) Consequently,

∣∣Q̂n,m(θ)− Q̂∗
n(θ)

∣∣ ≤ ln
f + 1

4
(f − f)Jρ̄mD

f
with probability above 1− δ(n).

Note this bound does not depend on θ or n.

Lastly,

sup
θ∈Θ

∣∣Q̂n(θ)−Q0(θ)
∣∣ ≤ sup

θ∈Θ

∣∣Q̂n(θ)− Q̂∗
n(θ)

∣∣+ sup
θ∈Θ

∣∣Q̂∗
n(θ)−Q0(θ)

∣∣
where supθ∈Θ

∣∣Q̂∗
n(θ)−Q0(θ)

∣∣ p→ 0 by Lemma 5. By δ(n) → 0, m(n) → +∞, and

lim
m→+∞

ln
f + 1

4
(f − f)Jρ̄mD

f
= 0,

we have supθ∈Θ
∣∣Q̂n(θ)− Q̂∗

n(θ)
∣∣ p→ 0. Thus, supθ∈Θ

∣∣Q̂n(θ)−Q0(θ)
∣∣ p→ 0

18This bound is not tight.
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Proof of Theorem 3. We are ready to apply Theorem 2.1 in Newey and McFadden

(1994). (1). By the identification assumption 3, Q0(θ) is uniquely maximized at θ0.

(2). Θ is compact. (3). As Prob∗j(θ; G̃) is also bounded below by f and continuous

in θ by Lemma 3, Q0(θ) is continuous. (4). Q̂n(θ) converges in probability to Q0(θ),

by Lemma 6. Thus, θ̂ is consistent.

To see T
m(n)

Ĝ,θ̂
Ψ

p→ G, note that

D(T
m(n)

Ĝ,θ̂
Ψ, G) ≤ D(T

m(n)

Ĝ,θ̂
Ψ, F−1(Ĝ, θ̂))+D(F−1(Ĝ, θ̂), F−1(Ĝ, θ0))+D(F−1(Ĝ, θ0), G).

The first term

D(T
m(n)

Ĝ,θ̂
Ψ, F−1(Ĝ, θ̂)) → 0 as m(n) → ∞.

The second term

D(F−1(Ĝ, θ̂), F−1(Ĝ, θ0))
p→ 0, as θ̂

p→ θ0

and F−1 is continuous in θ by Lemma 3. The third term

D(F−1(Ĝ, θ0), G)
p→ 0, as Ĝ

p→ G̃

and F is a homeomorphism by Proposition 1.

B.4 Proof of Theorem 4

Lemma 7. If Assumption 2, 3, and 4 hold, then θ̂∗ is asymptotically normal and
√
n(θ̂∗ − θ0)

d→ N (0, V ).

Proof of Lemma 7. We shall first rewrite the estimator as a generalized method of

moment estimator. We let ˆProb = ( ˆProb1, ˆProb2, · · · , ˆProbJ)
′ denote the observed

frequency of alternatives. Let 1p denote the cumulative indicator vector that assigns

0 for entries pj < p and 1 for entries pj ≥ p. Estimator θ̂∗ solves the first-order

condition of Equation (11)

1

n

n∑
i=1

g∗(zi, θ, Ĝ) = 0
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where Ĝ satisfies the moment condition

1

n

n∑
i=1

( ˆProb− yi) = 0 (23)

1

n

n∑
i=1

(Ĝj − yij1pi/
ˆProbj) = 0 for all j ∈ J (24)

where pi is the observed selected price for individual i.

For this standard GMM estimator, we can directly invoke Theorem 6.1 in Newey

and McFadden (1994). Note that our g∗ is their g and our ( ˆProb, Ĝ) is their γ̂ in

Newey and McFadden (1994). Let

m1(zi, ˆProb) = ˆProb− yi,

m2(zi, ˆProb, Ĝ) = [[Ĝ1−yi11pi/
ˆProb1]

′, [Ĝ2−yi21pi/
ˆProb2]

′, · · · , [ĜJ−yJ21pi/
ˆProbJ ]

′]′

We stack g∗, m1, m2 to form g̃∗

g̃∗(z, θ, ˆProb, Ĝ) = [g∗(z, θ, Ĝ)′,m1(z, ˆProb)′,m2(z, ˆProb, Ĝ)′]′

By the proof of Theorem 3 and Lemma 5, θ̂∗
p→ θ0. By the weak law of large

numbers, Ĝ
p→ G̃ and ˆProb

p→ Prob0 = Prob∗(θ0, G̃). By Assumption 4, θ0 ∈ Θo.

Next, we verify that g̃∗(z, θ, ˆProb, Ĝ) is continuously differentiable in θ, ˆProb, Ĝ.

First, we verify that g∗(z, θ, Ĝ) is continuously differentiable in θ. It suffices to

show that Prob∗(θ, Ĝ) is twice continuously differentiable in θ. As f is twice contin-

uously differentiable in θ, we only need to show that F−1(Ĝ, θ) is twice continuously

differentiable in θ. By Equation (1), (2) and f being twice continuously differentiable

in θ, F (G, θ) is twice continuously differentiable in θ and infinitely continuously dif-

ferentiable in G. Thus, by the implicit function theorem,

∇θF
−1(G̃, θ) = −

[
∇GF (G, θ)

]−1∇θF (G, θ)

where the matrix ∇GF (G, θ) is non-singular by F−1 being Lipschitz continuous. Con-

sequently, F−1 is twice continuously differentiable in θ.

Next, we verify that g∗(z, θ, Ĝ) is continuously differentiable in Ĝ. It suffices

to show that F−1(Ĝ, θ) is continuously differentiable in Ĝ. As F (G, θ) is infinitely
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continuously differentiable in G and F−1(Ĝ, θ) is Lipschitz continuous in Ĝ, we have

∇ĜF
−1(Ĝ, θ) = [∇GF (G, θ)]−1

which is continuous in Ĝ. Additionally, m1 and m2 are infinitely continuously differen-

tiable in all parameters θ, Ĝ, P̂ rob. Consequently, we have show that g̃∗(z, θ, ˆProb, Ĝ)

is continuously differentiable in θ, ˆProb, Ĝ.

In addition,

E[g∗(z, θ0, G̃)] = 0

by the first-order condition of Q0. Since fj is bounded from 0, ||g∗(z, θ0, G̃)|| is

finite for each z. Furthermore, as supp(G) is finite, there is only a finite possible

values of z. Thus, E[||g∗(z, θ0, G̃)||2] is finite. By g̃∗(z, θ, ˆProb, Ĝ) being continuously

differentiable in (θ, ˆProb, Ĝ) and a finite possible values of z,

E[ sup
θ, ˆProb,Ĝ

||∇θ, ˆProb,Ĝg̃
∗(z, θ, ˆProb, Ĝ)||] < ∞.

The last condition we need is that

E[∇θ, ˆProb,Ĝg̃
∗(z, θ0, P rob0, G̃)]

being nonsingular. The matrix ∇θ, ˆProb,Ĝg̃
∗(z, θ0, P rob0, G̃) is

∇θg
∗(z, θ0, G̃) 0 ∇Ĝg

∗(z, θ0, G̃)

0 I 0

0 ∇ ˆProbm2(z, Prob0, G̃) I


Its expectation being nonsingular is equivalent to E∇θg

∗(z, θ0, G̃) being nonsingular,

which is in Assumption 4.

We can write down the variance matrix V by Theorem 6.1 in Newey and McFadden

(1994).

A(z) =g∗(z, θ0, G̃) +
(
E∇Ĝg

∗(z, θ0, G̃)
)
×[(

E∇ ˆProbm2(z, Prob0, G̃)
)
×m1(z, Prob0)−m2(z, Prob0, G̃)

]
.
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V =
(
E∇θg

∗(z, θ0, G̃)
)−1 × E(A(z)A(z)′)×

((
E∇θg

∗(z, θ0, G̃)
)−1

)′

Proof of Theorem 4. Recall θ̂ solves the first-order condition

1

n

n∑
i=1

g(zi; θ̂, Ĝ, n) = 0.

We expand this equation around θ0 and solve for
√
n(θ̂ − θ0)

√
n(θ̂ − θ0) = −

[
1

n

n∑
i=1

∇θg(zi, θ̄, Ĝ, n)

]−1 n∑
i=1

1√
n
g(zi, θ0, Ĝ, n)

where the second summation is

n∑
i=1

1√
n
g(zi, θ0, Ĝ, n) =

n∑
i=1

1√
n

(
g∗(zi, θ0, Ĝ)+Op(

1√
n
)
)
=

n∑
i=1

1√
n
g∗(zi, θ0, Ĝ)+Op(1)

by Assumption 4 (v). Similarly,

1

n

n∑
i=1

∇θg(zi, θ̄, Ĝ, n) =
1

n

n∑
i=1

∇θg
∗(zi, θ̄, Ĝ) + Op(1).

Thus,
√
n(θ̂ − θ0) converges to(

E∇θg
∗(z; θ0, G̃)

)−1 n∑
i=1

1√
n
g∗(zi, θ0, Ĝ) + Op(1)

which has the same limiting distribution as
√
n(θ̂∗−θ0). Thus,

√
n(θ̂−θ0)

d→ N (0, V )

by Lemma 7.

To see the convergence rate of T
m(n)

Ĝ,θ̂
Ψ, note that

D(T
m(n)

Ĝ,θ̂
Ψ, G) ≤ D(T

m(n)

Ĝ,θ̂
Ψ, F−1(Ĝ, θ̂))+D(F−1(Ĝ, θ̂), F−1(Ĝ, θ0))+D(F−1(Ĝ, θ0), G).

The first term goes to 0 at rate faster than
√
n by Assumption 4 (v). By the proof of

Lemma 7, F−1 is continuously differentiable in θ; as Θ is compact, F−1 is Lipschitz
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continuous in θ. As θ̂
p→ θ0 at rate

√
n,

D(F−1(Ĝ, θ̂), F−1(Ĝ, θ0))
p→ 0 at rate

√
n.

The last term converges in probability to 0 at rate
√
n, as Ĝ

p→ G̃ at rate
√
n and by

Proposition 1.
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C Tables

Table 3: Simulation Results for Utility Parameters: N = 5000

Functional Contraction Two-Step Method
Bias Std. Dev. RMSE Bias Std. Dev. RMSE

DGP 1
γ -0.0022 0.0864 0.0864 0.0017 0.0917 0.0916
ξ2 0.0028 0.0345 0.0345 0.0045 0.0427 0.0429
β -0.0007 0.0412 0.0411 0.0003 0.0417 0.0416

DGP 2
γ 0.0011 0.0858 0.0857 0.0157 0.0982 0.0994
ξ2 0.0001 0.0344 0.0344 0.0051 0.0510 0.0512
β -0.0009 0.0427 0.0427 0.0052 0.0434 0.0436

DGP 3
γ -0.0133 0.0707 0.0719 0.1611 0.0984 0.1887
ξ2 0.0019 0.0317 0.0317 0.0137 0.0363 0.0388
β -0.0012 0.0414 0.0414 -0.0002 0.0417 0.0417

DGP 4
γ 0.0026 0.1544 0.1543 0.0433 0.1666 0.1720
ξ2 0.0009 0.0306 0.0306 -0.0001 0.0314 0.0314
β -0.0003 0.0404 0.0404 -0.0002 0.0406 0.0405

DGP 5
γ -0.0054 0.4395 0.4391 -0.0043 0.4274 0.4270
ξ2 0.0009 0.0304 0.0304 0.0010 0.0305 0.0305
β 0.0002 0.0399 0.0398 0.0003 0.0398 0.0398
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Table 4: Simulation Results for CDF of log(Price): N = 5000

Func. Contraction Two-Step Method
IBias2 IMSE IBias2 IMSE

DGP 1
F1(·|xi2 = 0) 0.0002 0.0007 0.0000 0.0040
F2(·|xi2 = 0) 0.0001 0.0002 0.0000 0.0003
F1(·|xi2 = 1) 0.0002 0.0009 0.0000 0.0024
F2(·|xi2 = 1) 0.0001 0.0003 0.0000 0.0008

DGP 2
F1(·|xi2 = 0) 0.0003 0.0009 0.0024 0.0078
F2(·|xi2 = 0) 0.0001 0.0002 0.0020 0.0023
F1(·|xi2 = 1) 0.0004 0.0010 0.0024 0.0056
F2(·|xi2 = 1) 0.0001 0.0003 0.0020 0.0029

DGP 3
F1(·|xi2 = 0) 0.0059 0.0064 0.0209 0.0269
F2(·|xi2 = 0) 0.0028 0.0029 0.0493 0.0499
F1(·|xi2 = 1) 0.0005 0.0011 0.0037 0.0057
F2(·|xi2 = 1) 0.0001 0.0003 0.0143 0.0152

DGP 4
F1(·|xi2 = 0) 0.0006 0.0011 0.0024 0.0077
F2(·|xi2 = 0) 0.0007 0.0008 0.0272 0.0277
F1(·|xi2 = 1) 0.0003 0.0012 0.0016 0.0047
F2(·|xi2 = 1) 0.0001 0.0003 0.0098 0.0104

DGP 5
F1(·|xi2 = 0) 0.0014 0.0018 0.0011 0.0053
F2(·|xi2 = 0) 0.0014 0.0015 0.0202 0.0206
F1(·|xi2 = 1) 0.0007 0.0018 0.0016 0.0055
F2(·|xi2 = 1) 0.0001 0.0003 0.0081 0.0084

Note: The IBias2 of a function h is calculated as follows. Let ĥr be the estimate of h from the
r-th simulated dataset, and h̄(x) = 1

R

∑R
r=1 ĥr(x) be the point-wise average over R simulations.

The integrated squared bias is calculated by numerically integrating the point-wise squared bias
(h̄(x)− h(x))2 over the distribution of x. The integrated MSE is computed in a similar way.
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Table 5: Simulation Results for Utility Parameters: Removing the Excluded Variable

N = 1000 N = 5000
Bias Std. Dev. RMSE Bias Std. Dev. RMSE

DGP 1
γ -0.0011 0.2082 0.2080 0.0018 0.0866 0.0865
ξ2 0.0074 0.0570 0.0574 0.0000 0.0254 0.0253

DGP 2
γ -0.0018 0.2066 0.2064 0.0024 0.1000 0.0999
ξ2 0.0033 0.0535 0.0535 0.0028 0.0264 0.0265

DGP 3
γ -0.0163 0.1581 0.1587 -0.0043 0.0728 0.0729
ξ2 0.0061 0.0542 0.0544 0.0007 0.0238 0.0238

DGP 4
γ 0.0019 0.3660 0.3656 0.0059 0.1563 0.1563
ξ2 0.0050 0.0498 0.0500 -0.0005 0.0225 0.0225

DGP 5
γ 0.0000 1.0797 1.0786 -0.0146 0.4409 0.4407
ξ2 0.0014 0.0531 0.0530 -0.0007 0.0233 0.0233

Note: In these specifications, we remove the excluded variable from the selection function, so the
parameter β in ui1 is not estimated.
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Table 6: Simulation Results for CDF of log(Price): Removing the Excluded Variable

N = 1000 N = 5000
IBias2 IMSE IBias2 IMSE

DGP 1
F1(·|xi2 = 0) 0.0002 0.0018 0.0002 0.0004
F2(·|xi2 = 0) 0.0001 0.0003 0.0000 0.0001
F1(·|xi2 = 1) 0.0003 0.0019 0.0002 0.0005
F2(·|xi2 = 1) 0.0001 0.0007 0.0001 0.0002

DGP 2
F1(·|xi2 = 0) 0.0004 0.0017 0.0003 0.0006
F2(·|xi2 = 0) 0.0002 0.0004 0.0001 0.0001
F1(·|xi2 = 1) 0.0005 0.0018 0.0003 0.0006
F2(·|xi2 = 1) 0.0002 0.0007 0.0001 0.0002

DGP 3
F1(·|xi2 = 0) 0.0058 0.0073 0.0061 0.0064
F2(·|xi2 = 0) 0.0029 0.0031 0.0028 0.0028
F1(·|xi2 = 1) 0.0006 0.0021 0.0005 0.0008
F2(·|xi2 = 1) 0.0001 0.0007 0.0000 0.0002

DGP 4
F1(·|xi2 = 0) 0.0006 0.0021 0.0006 0.0008
F2(·|xi2 = 0) 0.0008 0.0010 0.0007 0.0007
F1(·|xi2 = 1) 0.0004 0.0024 0.0003 0.0007
F2(·|xi2 = 1) 0.0001 0.0006 0.0000 0.0002

DGP 5
F1(·|xi2 = 0) 0.0014 0.0025 0.0013 0.0016
F2(·|xi2 = 0) 0.0013 0.0015 0.0014 0.0014
F1(·|xi2 = 1) 0.0007 0.0033 0.0006 0.0012
F2(·|xi2 = 1) 0.0002 0.0006 0.0001 0.0002

Note: In these specifications, we remove the excluded variable from the selection function. The
IBias2 of a function h is calculated as follows. Let ĥr be the estimate of h from the r-th simulated
dataset, and h̄(x) = 1

R

∑R
r=1 ĥr(x) be the point-wise average over R simulations. The integrated

squared bias is calculated by numerically integrating the point-wise squared bias (h̄(x)−h(x))2 over
the distribution of x. The integrated MSE is computed in a similar way.
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Table 7: Simulation Results for Utility Parameters: Misspecifying the Selection Func-
tion

N = 1000 N = 5000
Bias Std. Dev. RMSE Bias Std. Dev. RMSE

DGP 1
γ -0.0793 0.1826 0.1989 -0.0743 0.0806 0.1096
ξ2 -0.0754 0.0714 0.1038 -0.0752 0.0342 0.0826
β -0.0309 0.0856 0.0909 -0.0306 0.0392 0.0497

DGP 2
γ -0.0748 0.1864 0.2007 -0.0667 0.0806 0.1045
ξ2 -0.0714 0.0727 0.1018 -0.0742 0.0340 0.0816
β -0.0315 0.0902 0.0954 -0.0282 0.0407 0.0495

DGP 3
γ -0.1051 0.1475 0.1810 -0.0940 0.0650 0.1142
ξ2 -0.0789 0.0698 0.1053 -0.0768 0.0317 0.0830
β -0.0323 0.0887 0.0943 -0.0293 0.0398 0.0494

DGP 4
γ -0.0746 0.3249 0.3330 -0.0584 0.1442 0.1554
ξ2 -0.0776 0.0679 0.1030 -0.0755 0.0307 0.0814
β -0.0263 0.0900 0.0937 -0.0222 0.0392 0.0450

DGP 5
γ 0.0029 0.9169 0.9160 -0.0606 0.4177 0.4217
ξ2 -0.0827 0.0667 0.1063 -0.0801 0.0302 0.0856
β -0.0315 0.0847 0.0902 -0.0266 0.0381 0.0465

Note: In these specifications, we misspecify the selection model, assuming that the error term εi is
drawn from Logistic(0, 1).
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Table 8: Simulation Results for CDF of log(Price): Misspecifying the Selection Func-
tion

N = 1000 N = 5000
IBias2 IMSE IBias2 IMSE

DGP 1
F1(·|xi2 = 0) 0.0004 0.0029 0.0002 0.0007
F2(·|xi2 = 0) 0.0001 0.0006 0.0001 0.0002
F1(·|xi2 = 1) 0.0004 0.0032 0.0002 0.0009
F2(·|xi2 = 1) 0.0002 0.0013 0.0001 0.0003

DGP 2
F1(·|xi2 = 0) 0.0006 0.0033 0.0005 0.0010
F2(·|xi2 = 0) 0.0002 0.0006 0.0001 0.0002
F1(·|xi2 = 1) 0.0007 0.0037 0.0004 0.0010
F2(·|xi2 = 1) 0.0003 0.0015 0.0001 0.0004

DGP 3
F1(·|xi2 = 0) 0.0062 0.0087 0.0061 0.0066
F2(·|xi2 = 0) 0.0028 0.0032 0.0028 0.0029
F1(·|xi2 = 1) 0.0007 0.0033 0.0005 0.0011
F2(·|xi2 = 1) 0.0002 0.0013 0.0001 0.0003

DGP 4
F1(·|xi2 = 0) 0.0008 0.0034 0.0006 0.0012
F2(·|xi2 = 0) 0.0008 0.0012 0.0007 0.0008
F1(·|xi2 = 1) 0.0006 0.0046 0.0003 0.0012
F2(·|xi2 = 1) 0.0002 0.0011 0.0001 0.0003

DGP 5
F1(·|xi2 = 0) 0.0014 0.0034 0.0014 0.0019
F2(·|xi2 = 0) 0.0014 0.0018 0.0014 0.0015
F1(·|xi2 = 1) 0.0008 0.0058 0.0007 0.0018
F2(·|xi2 = 1) 0.0002 0.0011 0.0001 0.0003

Note: In these specifications, we misspecify the selection model, assuming that the error term εi is
drawn from Logistic(0, 1). The IBias2 of a function h is calculated as follows. Let ĥr be the estimate

of h from the r-th simulated dataset, and h̄(x) = 1
R

∑R
r=1 ĥr(x) be the point-wise average over R

simulations. The integrated squared bias is calculated by numerically integrating the point-wise
squared bias (h̄(x)−h(x))2 over the distribution of x. The integrated MSE is computed in a similar
way.
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