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Abstract

We study signaling games with quadratic payoffs. As signaling games admit

multiple separating equilibria, many equilibrium selection rules are proposed

and a well-known solution is Riley equilibria. They are separating equilibria in

which the sender achieves the highest equilibrium payoff for all types among

all separating equilibria. We analyze the conditions for Riley equilibria to be

linear, a common assumption in many applications. We derive a sufficient and

necessary condition for the existence and uniqueness of linear Riley equilibria.

We apply the result to confirm the dominance of linear equilibria in some classic

examples, and we show that, in some other examples, there exist previously

unknown nonlinear Riley equilibria.
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1 Introduction

Signaling games play an important role in many areas of social sciences, providing

insights into issues such as education (Spence, 1973), limit pricing (Milgrom and

Roberts, 1982), leadership (Hermalin, 1998), and insurance (Rothschild and Stiglitz,

1976). In signaling games, a privately informed sender strategically takes an action to

influence an uninformed receiver. A particularly important case is when the sender’s

equilibrium strategy is separating and completely reveals the state.

As signaling games admit multiple separating equilibria, many equilibrium selec-

tion rules are proposed and a well-known solution is Riley equilibria (Riley, 1975,

1979). They are separating equilibria in which the sender achieves the highest equi-

librium payoff for all types among all separating equilibria. Riley equilibria require

the least amount of inefficient signaling and therefore Pareto-dominate all separat-

ing equilibria. On the other hand, linear equilibria are widely studied due to their

simplicity.1 This paper answers an important query: does a linear Riley equilibrium

exist, and if so, under what conditions?

As linear solutions most commonly appear in quadratic settings, we focus on

signaling games with quadratic payoffs. A sender (he) is privately informed about an

underlying state θ ∈ Θ and takes an action a1 ∈ R. After observing a1, a receiver

(she) chooses an action a2 ∈ R. The sender’s ideal points for these two actions are

linear in the state. The receiver wants her action to match the state. This setup

is widely considered in the literature and nests a broad class of models in industrial

organization and organizational economics as shown in Section 5.

The analysis of quadratic signaling games is technically challenging, as the widely

adopted assumption of belief monotonicity and the single-crossing condition (for ex-

ample, Spence, 1973; Mailath, 1987; Roddie, 2011; Mailath and von Thadden, 2013)

do not necessarily hold.2 Without these assumptions, our analysis requires novel

arguments for analyzing Riley equilibria.

Our main result provides a necessary and sufficient condition for the existence and

uniqueness of linear Riley equilibria (Theorem 1). Our results imply that the common

restriction to linear strategies is only partially justified and that in general a wider

class of strategies is possible. To guarantee that Riley equilibrium is linear, one needs

1For example, Bonatti and Cisternas (2019); Argenziano and Bonatti (2021); Ball (2021) study
linear equilibria in signaling games with quadratic payoffs.

2See Section 6 for a more detailed discussion.
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to impose restrictions not only on the preference parameters but also on the state

space. On the other hand, we establish equilibrium properties such as continuity,

differentiability, and monotonicity (Theorem 2).

We apply our results to the following four examples in the literature. The classic

model of leadership in Hermalin (1998) studies how a leader incentivizes employees to

exert effort on a project. The leader privately observes the valuation of the project and

publicly exerts effort. Based on the leader’s effort, the other workers make inferences

about the project’s valuation and exert effort simultaneously. We show that whether

Riley equilibrium is linear crucially depends on the state space. Hermalin (1998)

focuses only on linear equilibria. Yet, if we slightly perturb the space of the valuation,

Riley equilibrium is no longer linear.

Argenziano and Bonatti (2021) consider a dynamic model of behavior-based price

discrimination. A consumer sequentially interacts with two firms. In the first period,

firm 1 sets a price and a quality level and the consumer chooses the quantity to

consume. A data linkage allows the second firm to observe the first-period outcome.

After observing the outcome, the second firm tailors its quality level and price to

the consumer’s type. Argenziano and Bonatti (2021) focus on linear Bayesian Nash

equilibria. We show that there exist previously unknown nonlinear Riley equilibria

under alternative parameters.

Kartik et al. (2007) analyze a model of strategic communication between an in-

formed but upwardly biased sender and an uninformed receiver. The sender bears a

cost of lying about his private information. Kartik et al. (2007) show that the sender’s

message is biased above the state. Dispensing with the belief monotonicity assump-

tion allows us to consider a case in which the sender’s preference is biased upward

for some states but downward for other states. We generalize Kartik et al.’s (2007)

result by showing that the language is inflated if and only if the sender is upwardly

biased (Proposition 3).

Following Aghion et al. (2004), we study a delegation problem where a principal

faces an informed but biased agent. The principal delegates control to the agent

to use his local knowledge. After learning from the agent’s decision, the principal

reclaims control and make decisions by herself. In this example, we show that Riley

equilibrium is also optimal for the principal (Proposition 4).
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Literature Review

We contribute to the literature on Riley equilibrium by studying its linearity.

Riley equilibrium is important in its own right and the literature has shown that it

admits many equilibrium refinements. Cho and Kreps (1987) show that in Spence’s

model of job-market signaling with two types, the only equilibrium not rejected by

the intuitive criterion is Riley equilibrium. Even with more than two types, Cho and

Sobel (1990) show that a stronger criterion, called the D1 refinement, selects Riley

equilibrium. Ramey (1996) shows that with multiple signals and a continuum of

states, the D1 refinement selects Riley equilibrium under the Spence–Mirrlees single-

crossing condition.3,4

Our paper contributes to the literature on signaling games by dispensing with

several common assumptions, including belief monotonicity and the single-crossing

condition (for example, Spence, 1973; Mailath, 1987; Roddie, 2011; Mailath and von

Thadden, 2013).5 Mailath (1987) studies signaling games with a continuum of types

and introduces belief monotonicity to discuss the differentiability of separating strate-

gies. In that paper, belief monotonicity is needed to provide two additional conditions.

The first is an initial value condition. The second is the Spence–Mirrlees single-

crossing condition. Each of these conditions (combined with regularity conditions)

implies differentiability of separating strategies.

Mailath (1987) pins down Riley equilibrium with the initial value condition. That

is, the worst type takes his most preferred action (with no inefficient signaling). He

mentions that “the worst type is the worst belief off the equilbrium path. A deviation

by the worst type to his most preferred action cannot be credibly punished.” This

logic is exactly the same as checking whether an equilibrium payoff profile fails the

intuitive criterion and D1. We generalize the initial value condition in Section 6.4.

3Similarly, Nöldeke and Samuelson (1997) consider a dynamic Spencian model with perturbations
and show that the only separating equilibrium selected by this model is Riley equilibrium.

4Both the intuitive criterion and divinity criterion rely on forward-induction arguments. A
growing body of work has given precise foundations for solution concepts based on forward-induction,
such as extensive-form rationalizability, in terms of assumptions of strong belief in rationality (see
Battigalli and Siniscalchi, 2002; Battigalli, 2006; Battigalli and Prestipino, 2013; Battigalli and
Catonini, 2021).

5In the literature, there are some other assumptions that improves the tractability of signaling
games. For example, Kartik et al. (2007) propose a direction condition: given a correct belief, taking
a higher action and inducing a higher belief affect the sender’s payoff in the same direction. In the
same vein, Mailath and von Thadden (2013) assume action monotonicity : under a correct belief,
the sender always prefers a higher action. Notice that none of these assumptions necessarily hold in
our model.
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2 The Model

We study games with quadratic payoffs. Let θ ∈ Θ denote the state of the world.

The state space Θ = [m,M ] is a bounded closed interval in R. A sender (he) is

privately informed about the underlying state θ and takes an action a1 ∈ R. After

observing a1, a receiver (she) chooses an action a2 ∈ R. The receiver’s payoff is given

by uR(θ, a2, a1). The sender’s payoff is given by

US(θ, a2, a1) = −(a1 − aS1 (θ))2 − δ(a2 − aS2 (θ))2,

where aS1 : Θ → R and aS2 : Θ → R denote the sender’s most preferred actions for a1

and a2, respectively. The parameter δ ≥ 0 captures the sensitivity of the sender’s

payoff to the receiver’s action.6 The quadratic form is tractable and allows for closed-

form solutions.

We assume that the receiver’s payoff uR(θ, ·, a1) is uniquely maximized at a2 =

aR(θ), which is independent of the sender’s action. In addition, we assume that aR(θ)

is continuous and strictly increasing in θ. We normalize7 aR(θ) = θ. Moreover, we

assume that the sender’s ideal points aS1 and aS2 are linear in the state: aS1 (θ) = k1θ+b1

and aS2 (θ) = k2θ+b2 with k1 6= 0. We discuss applications of quadratic signaling games

in Section 5.

Our interest is in separating equilibria, i.e., equilibria in which the sender plays

different actions in different states. A pure separating strategy for the sender is a one-

to-one mapping σ : Θ → R. Let µ : R → P(Θ) denote the receiver’s belief over the

states after observing the sender’s action, where P(Θ) denotes the set of probability

distributions on Θ. Given a strategy σ, let A1(σ) , {σ(θ)|θ ∈ Θ} be the range of

strategy σ. Bayes’ rule requires that if σ is separating, for any a ∈ A1(σ), µ(a) is

a point-mass distribution (Dirac function) on σ−1(a). For any a ∈ R \ A1(σ), all

beliefs are permissible, but we can show that it is without loss of generality to restrict

attention to point-mass beliefs (µ : R → Θ). Let V (θ, θ̂, a1) denote the sender’s

reduced-form payoff from taking action a1 when the true state is θ and the receiver

6Our results apply to the case where δ < 0 as well. But we need to additionally check a second-
order condition (3). We provide an example in Section 5.2.

7Indeed, we can relabel the state to be equal to θ̃ , aR(θ).
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infers θ̂ and best responds to this belief, i.e.,

V (θ, θ̂, a1) = −(a1 − aS1 (θ))2 − δ(θ̂ − aS2 (θ))2. (1)

A separating PBE is a one-to-one strategy, σ : Θ → R, and a receiver’s belief,

µ : R→ Θ, such that the following conditions hold:

1. Belief consistency: ∀θ ∈ Θ, µ(σ(θ)) = θ,

2. Incentive compatibility: ∀θ, θ′ ∈ Θ,

V (θ, θ, σ(θ)) ≥ V (θ, θ′, σ(θ′)),

3. Off-path belief: ∀θ ∈ Θ, ∀a /∈ A1(σ), V (θ, θ, σ(θ)) ≥ V (θ, µ(a), a).

As there may be many separating equilibria, we rank them in terms of the sender’s

payoff. A separating equilibrium is the Riley equilibrium if it gives the sender the

highest payoff among all separating PBE at every state. Formally, given an equilib-

rium where the sender plays strategy σ, this equilibrium is Riley equilibrium if, for

all θ ∈ Θ,

V (θ, θ, σ(θ)) ≥ V (θ, θ, σ′(θ))

holds for all σ′ played in any separating equilibrium.

In equilibrium, the receiver takes her most preferred action aR(θ) = θ, which

might differ from the sender’s ideal point aS2 (θ) = k2θ + b2. The distance between

them is aS2 (θ)− aR(θ) = k2θ + b2 − θ. First, we define the preference-aligned state θ0

in which this distance is zero:

θ0 = k2θ0 + b2.

That is, θ0 ,
b2

1−k2 , where θ0 may or may not be in Θ, depending on the values of the

parameters.8 Second, this distance as a function of the state θ increases at rate (k2−1).

The larger the distance, the smaller the sender’s payoff. Recall that δ captures the

sensitivity of the sender’s payoff to the receiver’s action. To measure the marginal

benefit of inducing a higher belief, we define the marginal impact r , δ(k2 − 1).

We now provide an overview of our main result.

8If k2 = 1, we can define θ0 =∞.
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Theorem 1. There exists a linear Riley equilibrium if and only if r > 0 and θ0 ∈ Θ.

Moreover, whenever it exists, it is unique.

We provide the analytical solution of the linear Riley equilibrium in Appendix A.

Proving this result requires several steps of analysis. Specifically, it follows directly

from our Proposition 2 and Theorem 2.

3 Preliminary Analysis

In this section, we characterize incentive-compatible separating strategies. We first

introduce a useful definition. Let S : Θ→ R, S(θ) , σ(θ)−aS1 (θ) denote the strategic

distortion—that is, the distance between the sender’s action and his ideal point. If

the sender is completely myopic, he ignores the inferential impact of his action and

chooses S(θ) = 0 for all θ. By contrast, the strategic sender distorts his action away

from the myopic benchmark. Consequently, S(θ) captures the strategic distortion.

From now on, we focus on S, as solving for S is equivalent to solving for the sender’s

strategy.

In the following analysis, we first identify some necessary conditions of incentive

compatibility—that is, what properties a separating strategy must have to be incen-

tive compatible. Then we combine these necessary conditions to make them jointly

sufficient.

First, notice that the sender’s equilibrium payoff must be continuous. Otherwise,

at the discontinuity, incentive compatibility fails. Since the sender’s equilibrium payoff

is −S2(θ)− δ(θ − aS2 (θ))2, the function |S| must be continuous everywhere.

Second, at any state where the sender’s strategy is continuous, how S varies with

the state is restricted by incentive compatibility. We define the sender’s payoff in

state θ when he takes action σ(θ′) and induces belief θ′ as

U (θ′; θ) , V (θ, θ′, σ(θ′)),

where we suppress the dependence on σ. Incentive compatibility is equivalent to

θ ∈ arg max
θ̂

U (θ̂; θ).

If the sender’s strategy is differentiable, two necessary conditions for the maximization
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problem described above must be satisfied. The first one is its first-order condition:

∂U (θ̂; θ)

∂θ̂

∣∣∣∣
θ̂=θ

= 0, ∀θ ∈ (m,M),

which we can write explicitly as a differential equation of S:

S(θ)[
dS(θ)

dθ
+ k1] = rθ + δb2. (2)

The second necessary condition is its second-order condition:

∂2U (θ̂; θ)

∂θ̂2

∣∣∣∣
θ̂=θ

≤ 0, ∀θ ∈ (m,M). (3)

Third, when an incentive-compatible separating strategy is discontinuous, the

direction of the jump is controlled by incentive compatibility. We can show that the

direction has the same sign as k1.9 In the following proposition, we summarize the

above discussions by three necessary conditions. It turns out that they are jointly

sufficient. We thus obtain a tractable characterization of incentive compatibility.

Proposition 1 (Characterization). A separating strategy S is incentive compatible if

and only if all of the following conditions hold:

1. |S| is continuous.

2. At every point in (m,M) where S is continuous, S is differentiable and satisfies

the first-order condition (2) and the second-order condition (3).

3. If S is discontinuous, then, at each discontinuity, both left and right limits exist

and the jump has the same sign as k1.

Incentive compatibility is a global concept that requires U (θ; θ) ≥ U (θ̂; θ) for

all θ, θ̂ ∈ Θ. Yet using this requirement to check incentive compatibility is tedious.

The proposition improves the tractability of identifying Riley equilibria. We use this

result to solve for Riley equilibria in the next section.

9An incentive-compatible separating strategy need not be either monotonic or continuous. We
provide an example in the proof of Proposition 4.
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4 Main Results

In this section, we characterize Riley equilibria that maximize the sender’s payoff in

all states. One question of particular interest is whether and when Riley equilibria are

linear. Before answering this question, we first need to know when a linear incentive-

compatible strategy exists. Hence, we first explore its existence.

4.1 Existence of Linear Incentive-Compatible Strategies

It turns out a linear incentive-compatible strategy does not always exist. We show

that its existence is determined by what we call the discriminant of the game: ∆ ,

k2
1 + 4r, where r = δ(k2 − 1).

Proposition 2 (Discriminant). There exists a linear incentive-compatible separating

strategy if and only if ∆ ≥ 0. Moreover, it takes the form S(θ) = t(θ − θ0), where t

is the slope.

Proof of Proposition 2. Necessity: Fix some linear strategy S(θ) = t(θ − θ0) + l,

parameterized by t and l. Then the marginal value of inducing a higher belief is

∂U (θ̂; θ)

∂θ̂

∣∣∣∣
θ̂=θ

= −2[(t2 + k1t− r)(θ − θ0) + l(t+ k1)].

For S to be incentive compatible, ∂U (θ̂;θ)

∂θ̂

∣∣∣∣
θ̂=θ

must vanish for every θ. In particular,

the coefficient of θ must vanish, i.e., t2+k1t−r = 0. The discriminant of this equation

for t is exactly ∆, which is the discriminant of the game. When ∆ is negative, there

are no solutions, and it follows that ∂U (θ̂;θ)

∂θ̂

∣∣∣∣
θ̂=θ

does not vanish for all θ. Thus, no

linear strategy can be incentive compatible.

Sufficiency: When ∆ ≥ 0, differential equation (2) has linear solutions (see Ap-

pendix A). Moreover, they satisfy the second-order condition. As linear solutions are

continuous, by the Characterization Proposition 1, the linear solutions are incentive

compatible.

Now suppose that there is a linear incentive-compatible strategy. By the Charac-

terization Proposition 1, it satisfies differential equation (2). Its linear solutions take

the form S(θ) = t(θ − θ0) (see Appendix A).
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The above proposition implies that the existence of a linear incentive-compatible

separating strategy crucially depends on the sign of the discriminant ∆. To illustrate

the intuition, we analyze the sender’s incentive to manipulate the receiver’s belief,

which we call the belief-manipulation incentive. Given a correct belief θ, the receiver’s

action leads to the sender’s payoff −δ(θ− aS2 (θ))2. When k2 > 1, aS2 (θ)− θ is positive

for θ > θ0 (negative for θ < θ0), where θ0 is the preference-aligned state. This

gives the sender an incentive to induce a belief slightly farther away from θ0 because

|aS2 (θ)− θ̂| is smaller when inducing a belief slightly farther away from θ0. Similarly,

when k2 < 1, the sender has an incentive to induce a belief slightly closer to θ0. A

incentive-compatible separating strategy has to balance the marginal benefit of belief

manipulation with the marginal cost of strategic distortion.

First, we explain why there cannot exist a linear incentive-compatible separating

strategy when r = δ(k2 − 1) is so negative that ∆ < 0. This corresponds to the

situation in which k2 < 1 and the two players’ preferences are sufficiently misaligned.

In the left panel of Figure 1, we plot both players’ ideal points in such a situation.

Suppose that k1 > 0. To counterbalance the incentive to induce a belief closer to θ0, we

have to set t ∈ (−k1, 0). That is, the sender’s strategy σ rotates clockwise moderately

(around θ0) relative to aS1 (θ) (see the right panel of Figure 1). As the preference gap

becomes sufficiently large because of a lower k2, the belief-manipulation incentive

becomes so strong that it outweighs the cost of strategic distortion, no matter what

linear strategy the sender uses.

Formally, consider a state θ < θ0. In a candidate linear separating equilibrium,

the marginal benefit of inducing a belief closer to θ0 is

∂

∂θ̂
[−δ(θ̂ − k2θ − b2)2]

∣∣∣∣
θ̂=θ

= −2r(θ0 − θ),

whose magnitude is scaled by the marginal impact r. For any linear strategy with

slope t ∈ (−k1, 0), the marginal cost of inducing a belief closer to θ0 is

∂

∂θ̂
[(σ(θ̂)− aS1 (θ))2]

∣∣∣∣
θ̂=θ

= −2(t2 + k1t)(θ0 − θ),

which is maximized at t = −k1/2. When r is so negative that ∆ = k2
1 + 4r < 0, the

marginal benefit always outweighs the marginal cost for any t ∈ (−k1, 0). Thus, no

linear strategy can be incentive compatible.

10



Bliss point

θ

aS2 (θ)

aR(θ)

0 θ0

a1

θ
0 θ0

aS1 (θ) = k1θ + b1

σ(θ) = t(θ − θ0) + aS1 (θ)

Figure 1: Bliss Point (Left) and Sender’s Strategy (Right)

Second, when r > 0, we can similarly consider a state θ > θ0. The marginal

benefit of inducing a belief farther away from θ0 is 2r(θ− θ0) while the marginal cost

is 2(t2 + k1t)(θ − θ0). We have to set t /∈ [−k1, 0] such that the marginal cost can

counterbalance the marginal benefit. As the range of t is unbounded in this case,

we can always find a suitable t such that the marginal cost cancels out the marginal

benefit. Therefore, an incentive-compatible linear strategy always exists.

Finally, the above analysis also highlights how k1 determines the existence of a

linear incentive-compatible separating strategy. Consider the case with r < 0 and

k1 > 0 (in Figure 1). To counterbalance the incentive to induce a belief closer to θ0,

we require t ∈ (−k1, 0).10 Then, the strategic distortion |S| increases with k1. This

implies that the marginal cost of inducing a belief closer to θ0 increases with k1. When

k1 is sufficiently large, this marginal cost can be strong enough to counterbalance the

belief-manipulation incentive for some suitable t. Thus, some linear strategies can be

incentive compatible.

The Discriminant Proposition 2 provides a necessary condition for the existence

of linear Riley equilibria. For the rest of the paper, we focus on non-negative discrim-

inant games. We relegate the discussion of negative discriminant games to Online

Appendix E.

10The case where k1 < 0 is symmetric. Then it must be true that t ∈ (0,−k1).
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Bliss point

θ

aS2 (θ)

aR(θ)

m Mθ0

a1

θm Mθ0

Linear strategy

aS1 (θ)

m′

Nonlinear strategy

Figure 2: Bliss Point (Left) and Sender’s Strategy (Right) for r > 0

4.2 Riley Equilibria

We next solve for Riley equilibria. First, the Characterization Proposition 1 identifies

the whole class of IC separating strategies. Second, we pin down the IC separating

strategy that maximizes the sender’s payoff at every state. Third, we construct a

PBE in which this optimal IC separating strategy is played. As the separating PBE

is a more demanding notion than incentive compatibility, the PBE constructed must

be the dominant separating PBE.

Theorem 2. In non-negative discriminant quadratic games, there exists a unique

Riley equilibrium. In this equilibrium, the sender’s strategy is

1. continuous and monotonic,

2. differentiable on (m,M),

3. linear if and only if r > 0 and θ0 ∈ Θ.

We fully solve for Riley equilibrium strategy’s closed form in Appendix C. Here we

illustrate the intuition for the sufficient and necessary condition of linearity. Recall

that the linear IC strategy must cross (θ0, 0) by the Discriminant Proposition. When

θ0 /∈ Θ, the strategic distortion of the linear IC strategy is nonzero on Θ. Therefore, we

can always find some other solution to equation (2) with a uniformly smaller strategic

distortion once we carefully set the initial value to be S(m) = 0 or S(M) = 0. Now

suppose that θ0 ∈ Θ. The more interesting question is why the condition for linearity

also requires r > 0.
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Bliss point

θ

aS2 (θ)

aR(θ)

m Mθ0

a1

θm Mθ0

aS1 (θ)

Linear strategy

Nonlinear strategy

Figure 3: Bliss Point (Left) and Sender’s Strategy (Right) for r < 0

Consider the case of r > 0; that is, k2 > 1. To counterbalance the belief-

manipulation incentive, the strategic distortion of an IC separating strategy must

deter the sender from inducing a belief farther away from θ0. Let us consider a state

θ > θ0. As the belief-manipulation incentive

∂

∂θ̂
[−δ(θ̂ − k2θ − b2)2]

∣∣∣∣
θ̂=θ

depends only on the state, the marginal cost of of inducing a belief farther away from

θ0,
∂

∂θ̂
[(σ(θ̂)− aS1 (θ))2]

∣∣∣∣
θ̂=θ

,

must be the same for all IC strategies. This implies that if an IC strategy induces a

smaller strategic distortion |σ(θ) − aS1 (θ)|, it must have a larger derivative. This is

shown in Figure 2, in which we plot the linear IC strategy and a nonlinear strategy

with a smaller strategic distortion.11 As θ0 ∈ Θ, the nonlinear strategy that has a

larger derivative cannot be extended with full support Θ. This in turn implies that

when θ0 ∈ Θ, all supported nonlinear IC strategies are farther from the bliss point

aS1 compared to the linear IC strategy and hence are uniformly dominated.

In the case of r < 0—that is, k2 < 1—the strategic distortion of an IC separating

strategy must deter the belief-manipulation incentive. In Figure 3, we plot the linear

IC strategy and a nonlinear IC strategy with a smaller strategic distortion. Suppose

that θ > θ0. As the strategic distortion is smaller in the nonlinear IC strategy, as θ

11Notice that if θ0 /∈ Θ and Θ is bounded below by m′ > θ0, the nonlinear strategy is indeed an
IC separating strategy that uniformly dominates the linear IC strategy.
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decreases, the nonlinear IC strategy must diverge from the bliss point faster and tends

to the linear strategy. Thus, we can have a nonlinear IC strategy that dominates the

linear strategy.

Remark 1. In Online Appendix E, we study negative discriminant quadratic games.

We find that when θ0 /∈ Θ, there exists a unique Riley equilibrium where the sender’s

strategy is nonlinear, continuous, monotonic, and differentiable. And when θ0 ∈
Θ, there is no continuous incentive-compatible separating strategy and, moreover, a

separating PBE might not exist.

5 Applications

Quadratic signaling games include the game studied in Argenziano and Bonatti (2021)

and the examples in Kartik et al. (2007). With slight mathematical manipulation,

they also include the game in Hermalin (1998). In this section, we apply our results

to investigate examples in the literature.

5.1 Leading by Example

The classic model of leadership in Hermalin (1998) studies how a leader incentivizes

employees to exert effort on a project. Since the firm benefits from all effort, the

leader is motivated to tell employees that all projects deserve their maximum effort.

Consequently, rational employees disregard the leader’s call. Nevertheless, the leader

herself can exert high effort and thereby incentivize her followers to do the same.

In the model, a team contains N identical workers, including a leader. Each worker

n exerts effort en towards a common endeavor. The value of the common endeavor is

V = θ
∑N

n=1 en, where θ ∈ Θ = [0, 1] denotes a random productivity factor.

A worker’s utility is sw × V − 1
2
e2, where sw denotes the worker’s share, sw × V

denotes his wage, and 1
2
e2 is the disutility from exerting effort. The leader’s utility

is sl × V − 1
2
e2, where sl + (N − 1)sw = 1. The leader privately observes θ and

publicly exerts effort. The other workers make inferences concerning θ based on the

leader’s effort. Let e(θ) denote the leader’s strategy in equilibrium, and θ̂ denote the
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followers’ belief. Each worker n solves the following problem:

max
en

[
swθ̂(en +

∑
j 6=n

ej)−
e2
n

2

]
.

They do so by choosing en = swθ̂. Therefore, the leader’s payoff from exerting effort

e when the state is θ and the followers infer θ̂ is given as follows:

V (θ, θ̂, e) = slθ(e+ (N − 1)swθ̂)−
e2

2
.

The leader solves

max
e(θ̂)

[
slθ(e(θ̂) + (N − 1)swθ̂)−

e2(θ̂)

2

]
with the first-order condition

e′(θ) =
sl(1− sl)θ
e− slθ

,

which satisfies differential equation (2). Matching coefficients, we have r = sl(1−sl) >
0, θ0 = 0 ∈ Θ. Therefore, by Theorem 2, the unique Riley equilibrium is linear, which

coincides with Lemma 3 and Proposition 5 of Hermalin (1998).12 Yet this result hinges

critically on the assumption that Θ = [0, 1]. If the productivity factor is bounded

away from 0 (for example, Θ = [1, 2]), then θ0 = 0 /∈ Θ. By Theorem 2, Riley

equilibrium is no longer linear. This case is not analyzed by Hermalin (1998).

To deepen our understanding, we rewrite the leader’s problem as follows:

V (θ, θ̂, e) = −1

2
(e− slθ)2 +

1

2
s2
l θ

2 + rθθ̂.

If the leader is myopic and ignores the inferential impact of his effort, he optimally

chooses e = slθ—that is, his bliss point. A strategic leader can benefit from inducing

a higher belief θ̂. The marginal benefit of inducing a higher belief is ∂V

∂θ̂
= rθ, where

r is the marginal impact. Thus, the higher the productivity factor θ, the stronger the

incentive. As the leader desires to induce a higher belief, e = slθ cannot be sustained

in equilibrium and his effort is biased upward. But as his effort diverges from his

12Zhou (2016) uses Hermalin’s (1998) model to explore leadership within hierarchical organiza-
tions. His analysis heavily depends on the linear equilibrium.
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Figure 4: The Leader’s Strategy for Θ = [1, 2]

bliss point e = slθ, it incurs a cost in −1
2
(e− slθ)2. In equilibrium, for all separating

strategies, the marginal cost of exerting more effort must equal the marginal benefit

of inducing a higher belief. Among these strategies, the strategy in Riley equilibrium

is closest to the leader’s bliss point e = slθ.

Suppose that Θ = [1, 2]. Riley equilibrium is between the leader’s bliss point and

the incentive-compatible linear strategy (Figure 4) and therefore features a uniformly

lower effort than the incentive-compatible linear strategy.13 In the linear strategy, the

marginal cost of inducing a higher belief

∂

∂θ̂
[−1

2
(e(θ̂)− slθ)2]

∣∣∣∣
θ̂=θ

is a first-order effect, as e(θ)− slθ > 0 for all θ ∈ Θ. The linear slope is pinned down

such that this first-order effect counterbalances the marginal benefit rθ. By contrast,

Riley equilibrium features e(1) = sl. If e(θ) were to increase linearly, the marginal

cost of inducing a higher belief

∂

∂θ̂
[−1

2
(e(θ̂)− slθ)2]

∣∣∣∣
θ̂=θ

would be zero at θ = 1 (a second-order effect), which falls short of the nonzero

marginal benefit. Thus, as θ approaches 1, the slope of e(θ) tends to infinity. As θ

increases, e(θ) diverges away from slθ. As the strategic distortion e(θ)−slθ increases,

it requires less of an increment in e(θ)− slθ to counterbalance the marginal benefit.

13See the closed form in the proof of Theorem 2 in Appendix C.

16



But as the strategic distortion in Riley equilibrium is smaller than that of the linear

strategy, the slope e′(θ) of Riley equilibrium is larger than that of the linear strategy.

Therefore, Riley equilibrium strategy converges to the linear strategy as θ increases.

Consequently, Riley equilibrium is nonlinear.

What is different when Θ = [0, 1]? If Θ = [0, 1], then at θ = 0, the marginal

benefit of inducing a higher belief, rθ, is also zero, which allows the linear strategy

with e(0) = 0 to grow linearly at θ = 0. As the linear strategy satisfies the initial

condition e(0) = 0, the linear strategy coincides with Riley equilibrium.

5.2 Data Linkages

Argenziano and Bonatti (2021) consider a dynamic model of behavior-based price

discrimination. (They use a different solution concept—Bayesian Nash equilibrium.14)

A consumer sequentially interacts with two firms. In each period t ∈ {1, 2}, the active

firm sets a price pt and a quality level yt and the consumer chooses the quantity qt to

consume. A data linkage allows the second firm to observe the first-period interaction

outcome (p1, y1, q1). After observing the outcome, the second firm tailors its quality

level and price to the consumer’s type.

In each period, the consumer’s utility is given by

U(pt, yt, qt) = (θ + btyt − pt)qt −
q2
t

2
,

where the consumer’s type θ ∈ Θ = [m,M ] is his baseline consumption level before

adjusting for price and quality, bt ∈ [0,
√

2) is common knowledge and represents the

sensitivity of the consumer’s valuation to the quality of firm t’s product, and btyt−pt
is the terms of trade that firm t offers to the consumer. Firm t’s profits are

Π(pt, yt, qt) = ptqt −
y2
t

2
.

To maximize profits, the second firm sets its terms of trade to be λ2θ̂ (we skip the

calculations), where θ̂ is the inferred type and λ2 =
b22−1

2−b22
∈ [−1

2
,∞). Given first-period

14They require the firm’s strategy to be linear even off the path as in Ball (2021). See footnote
6 in Argenziano and Bonatti (2021) for more details.
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Figure 5: Consumer’s Strategy for λ2 < 0 (Left), λ2 > 0 and 0 /∈ Θ (Right)

consumption q1 and inference θ̂, the type-θ consumer’s payoff is

V (θ, θ̂, q1) = (θ + b1y1 − p1)q1 −
q2

1

2
+

1

2
(θ + λ2θ̂)

2.

Therefore, the consumer solves the problem

max
q1(θ̂)

[ (θ + b1y1 − p1)q1(θ̂)− q2
1(θ̂)

2︸ ︷︷ ︸
first-period utility

+
1

2
(θ + λ2θ̂)

2︸ ︷︷ ︸
second-period utility

]. (4)

Matching the coefficients to our model (1), we have r = λ2(1 + λ2), θ0 = 0. Let

S = q1−(θ+b1y1−p1). There are two linear IC strategies S = λ2θ and S = −(λ2+1)θ.

By Theorem 2, in Riley equilibrium, the consumer’s strategy is linear iff λ2 > 0 and

0 ∈ Θ. When Riley equilibrium is indeed linear, it coincides with the linear BNE of

Proposition 2 in Argenziano and Bonatti (2021).

Yet our Theorem 2 implies that Riley equilibrium can be nonlinear.15 We plot the

remaining cases in Figure 5. In the first period, the consumer strategically consumes

15When λ2 < 0, Riley equilibrium strategy is

(S − λ2θ)λ2

[S + (λ2 + 1)θ]−(λ2+1)
=

(−λ2M)λ2

(λ2M +M)−(λ2+1)
(S ≤ 0).

When λ2 > 0 and 0 /∈ Θ, Riley equilibrium is

(λ2θ − S)λ2

[S + (1 + λ2)θ]−(1+λ2)
=

(λ2m)λ2

[(1 + λ2)m]−(1+λ2)
(S ≥ 0).

We need to additionally check whether the strategy in Theorem 2 satisfies problem (4)’s second-order
condition. It turns out to be true for both of the above solutions.
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less than his ideal quantity θ + b1y1 − p1 if λ2 < 0 but consumes more than his ideal

quantity if λ2 > 0. When λ2 < 0, the second firm’s terms of trade λ2θ̂ are decreasing

in belief. As the consumer’s second-period utility is 1
2
(θ + λ2θ̂)

2, the consumer bears

a cost of inducing a higher belief. In equilibrium, as the consumer consumes less than

the ideal quantity, the marginal benefit of consuming more in the first period must

counterbalance the marginal cost of inducing a higher belief in the second period.

By contrast, when λ2 > 0, the consumer benefits from inducing a higher belief. In

equilibrium, as the consumer consumes more than the ideal quantity, the marginal

cost of consuming more in the first period must counterbalance the marginal benefit

of inducing a higher belief in the second period.

5.3 Strategic Communication with Lying Costs

Kartik (2009) and Kartik et al. (2007) analyze a model of strategic communication

between an informed but upwardly biased sender (he) and an uninformed receiver

(she). The sender bears a cost of misreporting or lying about his private information.

The cost may stem from moral constraints, legal penalties, or fabrication costs. In this

setting, the sender may employ inflated language, where by inflated we mean that the

sender’s message is biased above the state. To preserve the flavor of inflated language

in equilibrium without getting into technical details, we assume that Θ = [0, 1] as in

Kartik (2009).

In the model, a sender is privately informed about the state θ ∈ Θ. After observing

the state, he sends a message m to a receiver, who then takes an action a2. The

sender’s payoff is

US = −k(m− θ)2 − (a2 − aS2 (θ))2,

where aS2 (θ) = λθ+b is his ideal action for the receiver and k(m−θ)2 denotes the cost

of lying when the state is θ and the message is m. The receiver’s payoff is maximized

when her action a2 matches the state—that is, aR(θ) = θ. Given the receiver’s best

response, the sender gets a payoff of

V (θ, θ̂,m) = −k(m− θ)2 − [θ̂ − (λθ + b)]2

when the receiver’s belief is θ̂. Plugging in the coefficients from our model (1), we get

r = λ−1
k

and θ0 = − b
λ−1

.
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Figure 6: Sender’s Strategy when θ0 ∈ Θ
λ > 1 (Left) and λ < 1 (Right)

Kartik et al. (2007) consider the case where λ = 1 and b > 0. By Theorem 2, the

sender’s strategy is

m +
b

k
ln(

b

k
−m + θ) =

b

k
ln(

b

k
),

which is nonlinear. It coincides with solution (6) in Kartik et al. (2007). The language

in equilibrium is inflated, as m ≥ θ.

Yet this feature of inflated language relies critically on local belief monotonicity—

that is, aS2 (θ) > aR(θ) for all θ ∈ Θ. (See Section 6 for a formal definition of belief

monotonicity.) What happens if the sender’s most-preferred action aS2 (θ) is biased

upward for some states but biased downward for other states? Then, the sender may

employ either inflated or deflated language and the direction of language distortion

depends only on how the sender’s bliss point aS2 (θ) is biased from the receiver’s ideal

point aR(θ). In particular, the language is inflated (deflated) whenever the sender’s

bliss point is above (below) the state.

Proposition 3. In Riley equilibrium, the sender’s language is inflated at θ if and

only if aS2 (θ) > aR(θ).

This result is not limited to the model of lying cost. A similar conclusion holds for

all quadratic signaling games. By Theorem 2, Riley equilibrium is linear if and only

if λ > 1 and θ0 ∈ Θ. In Figure 6, we plot the case for λ > 1 when Riley equilibrium

is linear and the case for λ < 1 when Riley equilibrium is nonlinear. We can see that

the direction of the language distortion is indeed aligned with the direction of the

preference bias aS2 (θ)− aR(θ).
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Figure 7: Dominant Delegation
This figure is drawn for k1 = k2 = 1, b1 = b2 = 0.2, δ = 0.5.

5.4 Transferable Control and Learning by Delegation

The classic delegation problem considers a principal (she) who faces an informed but

biased agent (he). The principal delegates control to the agent to use his local knowl-

edge and is unable to commit to contingent transfers. In many real-life examples, the

principal cannot contractually commit to relinquishing control in the future (Aghion

et al., 2004). After learning the local knowledge from the agent’s decision, the prin-

cipal can reclaim control and make decisions by herself. Aghion et al. (2004) study

transferable control and learning by delegation when the state is discrete. In this

section, we study the same problem when the state is continuous.

In a two-period delegation model, the principal delegates control in the first period

and reclaims control in the second one. Let θ ∈ Θ = [0, 1] denote the state of the

world. In the first period, the agent privately observes the state θ and makes a decision

a1 ∈ R. In the second period, the principal makes a decision a2 ∈ R based on the

agent’s decision a1. The principal’s and agent’s payoffs depend on the implemented

decisions and the state. The principal wants her decision a2 to match the state, while

the agent’s ideal point is aS1 = aS2 = θ + b, where b > 0 measures the preference bias.

The agent’s payoff is US = −(a1 − θ − b)2 − δ(a2 − θ − b)2.

Given the principal’s belief θ̂, the agent’s payoff is

V (θ, θ̂, a1) = −(a1 − θ − b)2 − δ(θ̂ − θ − b)2.
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Matching the coefficients to model (1), we have r = 0. By Theorem 2, Riley equilib-

rium is nonlinear (see Figure 7):

θ + S + δb ln(δb− S) = δb ln(δb).

As δ tends to zero, Riley equilibrium degenerates to the standard static delegation

a1 = θ + b

as in Dessein (2002).

Thus far, we have focused on Riley equilibrium that maximizes the sender’s (i.e.,

the agent’s) payoff at every state. In this example, we explore how the receiver (i.e.,

the principal) ranks different separating PBE. Does Riley equilibrium yield the highest

possible expected payoff to the principal? To address this question, it is necessary to

impose some assumptions on the state distribution and on the principal’s preference

about a1. As an extension of the classic example in Crawford and Sobel (1982), we

assume that the state is uniformly distributed and that UR = −(a1 − θ)2 + g(θ, a2),

where g(θ, a2) is maximized at a2 = θ for all θ. In this setting, we can show that

Riley equilibrium is also optimal for the principal among all separating equilibria.

Proposition 4. If the state is uniformly distributed, Riley equilibrium is optimal for

the principal.

By the proof of Theorem 2, we can analytically solve for all IC strategies. Some of

them are discontinuous. To prove Proposition 4, we first show that all discontinuous

strategies are Pareto-dominated by the linear strategy. (The linear strategy is in-

creasing.) Second, we show that all decreasing continuous strategies are inadmissible

for any PBE. Third, among all increasing continuous strategies, we show that Riley

equilibrium is uniformly closest to the principal’s ideal point.

6 Concluding Remarks

This paper studied Riley equilibria in quadratic signaling games. We derived a nec-

essary and sufficient condition for the existence and uniqueness of a linear Riley equi-

librium. One assumption we imposed is a quadratic form of the preference. This form
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succinctly captures some key properties of concave preferences and allows for closed-

form solutions. Nevertheless, a natural direction for future research is to generalize

our conclusions beyond quadratic games.

In this section, we conclude our paper by showing why quadratic signaling games

do not necessarily satisfy some widely adopted assumptions in the literature, includ-

ing the belief monotonicity and single-crossing conditions. Then we explore some

properties of Riley equilibrium in quadratic signaling games.

6.1 Belief Monotonicity

In the literature (see, for example, Mailath, 1987; Roddie, 2011; Kartik et al., 2007),

the belief-monotonicity assumption states that

V2(θ, θ̂, a1) 6= 0 ∀(θ, θ̂, a1),

where subscripts on functions denote derivatives. That is, the sender always prefers

a higher (lower) belief, regardless of the state, the belief, and his action. Belief

monotonicity is satisfied if and only if aS2 (θ) /∈ Θ for all θ ∈ Θ. To see this, if aS2 (θ) ∈ Θ

for some θ ∈ Θ, then V2(θ, aS2 (θ), a1) = 0 for all a1. In the delegation example, as

long as b is sufficiently small, there exists some θ ∈ Θ such that aS2 (θ) ∈ Θ.

Kartik et al. (2007) consider a weaker condition

V2(θ, θ, a1) 6= 0 ∀(θ, a1),

which we call local belief monotonicity. That is, given a correct belief, the sender

always prefers a slightly higher (lower) belief, regardless of the state and his action.

Local belief monotonicity is satisfied if and only if θ0 /∈ Θ, as V2(θ, θ, a1) = 0 if and

only if θ = θ0.

6.2 Single-Crossing Condition

We show that our model does not necessarily satisfy the single-crossing condition. A

function V (θ, θ̂, a1) satisfies single-crossing if when θ1 < θ2 and θ̂1 < θ̂2: V (θ1, θ̂1, a1) ≤
V (θ1, θ̂2, a

′
1) and a1 ≤ a′1 imply V (θ2, θ̂1, a1) ≤ V (θ2, θ̂2, a

′
1), and strictness in either

inequality implies V (θ2, θ̂1, a1) < V (θ2, θ̂2, a
′
1). A function V (θ, θ̂, a1) satisfies strong
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single-crossing if, when θ1 < θ2, V (θ1, θ̂1, a1) ≤ V (θ1, θ̂2, a
′
1) and a1 ≤ a′1 imply

V (θ2, θ̂1, a1) ≤ V (θ2, θ̂2, a
′
1), and strictness in either inequality implies V (θ2, θ̂1, a1) <

V (θ2, θ̂2, a
′
1). Strong single-crossing implies single-crossing. Moreover, the Spence–Mirrlees

single-crossing condition implies strong single-crossing (Cho and Sobel, 1990).

Consider a setting in which aR(θ) = aS1 (θ) = θ and aS2 (θ) has a negative slope. We

set θ̂1 = θ1 < θ0, θ2 such that aS2 (θ2) = θ̂1, and θ̂2 such that θ̂2 = aS2 (θ1) (see Figure

8). Obviously θ1 < θ2 and θ̂1 < θ̂2. Next we set a′1 = aS1 (θ1) + d, a1 = aS1 (θ1)− d, for

some d > 0. By construction, we have a′1 > a1 and V (θ1, θ̂1, a1) < V (θ1, θ̂2, a
′
1), which

also holds if we replace θ1 by θ̃2 > θ1 sufficiently close to θ1. But

V (θ2, θ̂2, a
′
1)− V (θ2, θ̂1, a1) = 4d(θ2 − θ1)− δ(θ̂2 − θ1)2.

Since d > 0 can be made arbitrarily small, we have V (θ2, θ̂1, a1) > V (θ2, θ̂2, a
′
1) for

some sufficiently small d.

6.3 Comparative Static Analysis

We now perform a comparative static analysis. To begin, we illustrate the sender’s

manipulation incentives. In any separating equilibrium, the sender’s action a1 signals

his type. We let µ(a1) express the belief’s dependence on the sender’s action. He

solves the following problem:

max
a1

[−(a1 − k1θ − b1)2 − δ(µ(a1)− k2θ − b2)2]
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The sender thereby faces a trade-off between optimizing his action a1 and manipulat-

ing θ̂. The strength of such manipulation incentives hinges on δ and the sensitivity of

the belief µ(a1). The greater δ, the stronger the manipulation incentive, which leads

to a larger strategic distortion.

Proposition 5. Suppose that the discriminant is non-negative. In Riley equilibrium,

|S| is increasing in δ.

6.4 Properties of Riley Equilibrium

In this subsection, we highlight some properties of Riley equilibrium. First, given

belief monotonicity, we illustrate how Riley equilibrium is consistent with the classic

initial condition of Mailath (1987). This condition requires that S(θw) = 0, where θw

is the worst type—that is, the worst point belief the receiver can hold. For instance,

if V2(θ, θ̂, a1) > 0 for all (θ, θ̂, a1), then θw = m. In Mailath (1987), this condition

and incentive compatibility together can uniquely pin down an equilibrium. We show

that this initial condition is implied by Riley equilibrium, given belief monotonicity.

Second, we generalize this result as we gradually relax belief monotonicity.

The initial condition is justified by sequentiality. That is, since θw is the worst

belief, if S(θw) 6= 0, a deviation by S(θw) 6= 0 to S(θw) = 0 cannot be credibly

punished in equilibrium. However, sequentiality is a pure equilibrium-refinement

condition and hence does not explain why the sender does so in the first place.

To connect our discussion to Mailath (1987), consider a setting satisfying belief

monotonicity. Without loss of generality, we take aS2 (θ) > M for all θ as an illustra-

tion. In this setting, V2(θ, θ̂, a1) > 0 for all (θ, θ̂, a1). Thus, the worst type θw = m.

Then Riley equilibrium features S(m) = 0. That is, the traditional initial condition

is implied by the optimality of the sender’s strategy. That is, the initial condition

comes as part of Riley equilibrium.

To generalize this result, let us modify the above example. Without loss of gen-

erality, consider k2 > 1 and aS2 (m) ∈ Θ. Then the belief monotonicity condition is

violated. Riley equilibrium in this setting still features S(m) = 0. But how do we

extrapolate from the above intuition? The answer lies in local belief monotonicity. In

this example, since V2(θ, θ, a1) > 0 for all (θ, a1), we can similarly define a generalized

worst type θw = m, and Riley equilibrium still has S(θw) = 0.

What happens if the local belief monotonicity is violated? This occurs if and
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only if θ0 ∈ Θ. In this situation, Riley equilibrium features S(θ0) = 0. Yet it

is inappropriate to view this as an initial condition since θ0 is a singularity of the

differential equation. At θ = θ0, in the Riley equilibrium, the sender obtains the

maximum payoff possible, US = 0. That is, the sender achieves his ideal points for

both a1 and a2. Since preferences are aligned at θ0, the sender willingly reveals his

type. Then the receiver takes the action most beneficial for both of them.

We can summarize the above discussion in the following proposition. Let θw

denote the generalized worst type when local belief monotonicity holds. Formally,

θw = m if V2(θ, θ, a1) > 0 for all (θ, a1), and θw = M if V2(θ, θ, a1) < 0 for all (θ, a1).

Proposition 6. Suppose that the discriminant is non-negative. In Riley equilibrium,

S(θw) = 0 if local belief monotonicity holds, and S(θ0) = 0 otherwise.
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Appendix

A Solutions to Differential Equation (2)

We start by solving differential equation (2). The solutions will be useful later. We

solve it case by case.

Analysis for r = 0

The DE reduces to

S(θ)
dS(θ)

dθ
= (δb2 − k1S(θ)).

The solution is as follows:

k2
1θ + k1S(θ) + δb2 ln |δb2 − k1S(θ)| = C.

A special solution is k1S(θ) = δb2.

Analysis for r 6= 0

Define φ , θ − θ0. DE (2) is

S(φ)[
dS(φ)

dφ
+ k1] = rφ. (5)

It is centrosymmetric around (φ, S) = (0, 0). Let w(φ) , S(φ)
φ

. DE (5) reduces to

w(φ)

w2(φ) + k1w(φ)− r
dw(φ)

dφ
= −1

φ
. (6)

The form of general solutions depends on ∆. A linear solution exists if and only if

∆ ≥ 0. If ∆ > 0, there exist two linear special solutions, S = w1φ and S = w2φ,

where w1 and w2 denote solutions to the equation w2 + k1w− r = 0. Without loss of

generality, let us assume |w1| ≤ |w2|.

w1 + w2 = −k1 (7)

w1 × w2 = −r (8)
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We further rewrite DE (6):

w(φ)dw(φ)

(w(φ)− w1)(w(φ)− w2)
= −dφ

φ

w1

w1 − w2

dw(φ)

w(φ)− w1

− w2

w1 − w2

dw(φ)

w(φ)− w2

= −dφ
φ

The general solutions take the form

|S(φ)− w1φ|w1

|S(φ)− w2φ|w2
= C. (9)

If ∆ = 0, there is a unique linear special solution S(φ) = w1φ, where w1 = w2 =

−k1
2

is the solution for equation w2 + k1w − r = 0. We further rewrite DE (6) as

w(φ)dw(φ)

(w − w1)2
= −dφ

φ

dw(φ)

w(φ)− w1

+
w1dw(φ)

(w(φ)− w1)2
= −dφ

φ
.

The general solutions take the form

ln |S(φ)− w1φ| −
w1φ

S(φ)− w1φ
= C. (10)

If ∆ < 0, define q , 1
2

√
−∆, z(φ) , w(φ) + k1

2
. We rewrite DE (6) as follows:

w(φ)dw(φ)

(w(φ) + k1
2

)2 − ∆
4

= −dφ
φ

zdz

z2 + q2
− k1

2

dz

z2 + q2
= −dφ

φ

The general solutions are

ln |S2 + k1Sφ− rφ2| − k1

q
arg tan(

S

qφ
+
k1

2q
) = C. (11)
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B Omitted Proofs in Section 3

We first prove four Lemmas. Then the proof of Proposition 1 follows.

Lemma 1. Continuity. Suppose a separating strategy S is incentive compatible.

Then |S| is continuous.

Proof of Lemma 1. If the function |S| is discontinuous at θ̃, the sender’s equilibrium

payoff −S2(θ)− δ(θ − aS2 (θ))2 is also discontinuous at θ̃. Then incentive compatibil-

ity fails in an arbitrarily small neighborhood of θ̃. Thus, the function |S| must be

continuous everywhere.

For the next three lemmas, we only prove the case where k1 > 0. The other case

is symmetric around the θ-axis.

Lemma 2. Aligned Monotonicity.

1. Suppose k1 > 0. For any θ ∈ Θ, if there exists a sequence θn → θ and θn ≤ θ

for all n such that S(θn) > 0, then S(θ) ≥ 0.

2. Suppose k1 > 0. For any θ ∈ Θ, if there exists a sequence θn → θ and θn ≥ θ

for all n such that S(θn) < 0, then S(θ) ≤ 0.

Proof of Lemma 2. Since the proofs of these two claims are similar, we just prove the

first one.

By way of contradiction, suppose S(θ) < 0. Take θn, θm from the sequence. Let

θn 6= θm tend to θ, by |S| being continuous, S(θn)→ |S(θ)|, S(θm)→ |S(θ)|. We first

prove

lim
n,m→∞

S(θn)− S(θm)

θn − θm
=
rθ + δb2

|S(θ)|
− k1.

Let T (θ) = rθ+δb2
|S(θ)| − k1. Suppose there exists an ε > 0 such that for any N > 0, there

exists n,m > N with θn 6= θm such that

|S(θn)− S(θm)

θn − θm
− T (θ)| > ε.

If
S(θn)− S(θm)

θn − θm
> T (θ) + ε,

U (θm; θn)−U (θn; θn) > 2ε|S(θ)(θn − θm)|+O((θn − θm)2);
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if
S(θn)− S(θm)

θn − θm
< T (θ)− ε,

U (θn; θm)−U (θm; θm) > 2ε|S(θ)(θn − θm)|+O((θn − θm)2),

which contradicts incentive compatibility when |θn − θm| is sufficiently small.

Then fix an n and let m→∞. We have

S(θn) = |S(θ)| − (
δb2 + rθ

|S(θ)|
− k1)(θ − θn) +O((θ − θn)2). (12)

By the definition of U ,

U (θ; θn) = −[|S(θ)| − k1(θ − θn)]2 − δ(θ − k2θn − b2)2,

U (θn; θn) = −S2(θn)− δ(θn − k2θn − b2)2.

By (12), the difference

U (θ; θn)−U (θn; θn) = 4k1|S(θ)|(θ − θn)−O((θ − θn)2) > 0

when θ−θn is sufficiently small. This implies that if S(θ) < 0, the sender at sufficiently

close θn has incentive to mimic θ; hence the incentive-compatibility constraint fails.

So it must be true that S(θ) ≥ 0.

Lemma 3. Jump. Suppose a separating strategy is incentive compatible. If it is dis-

continuous, at any discontinuity, both left and right limits exist and the jump direction

has the same sign as k1.

Proof of Lemma 3. As |S| is continuous, |S(θ−)| = |S(θ)| = |S(θ+)|. Suppose S(θ)

is discontinuous at y. Then |S(y)| 6= 0. It suffices to prove the case of S(y) > 0.

The other case is symmetric. Suppose S(y) > 0. By the contrapositive of the second

point of Lemma 2, there exists an ε > 0 such that S(θ) ≥ 0 for all θ ∈ (y, y + ε).

Since |S| is continuous, the right limit S(y+) exists and S(y) = S(y+) > 0. Then

either S(y−) does not exist or S(y−) exists and S(y−) = −S(y+). Next we show

that S(y−) exists.

By way of contradiction, suppose S(y−) does not exist. As |S| is continuous, there

exists a sequence yn → y and yn < y such that S(yn) > 0. Take a ym sufficiently close
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to y such that |S(θ)| > 0 for all θ ∈ [ym, y]. Define

x , sup{θ′ ∈ Θ|S is continuous on (ym, θ
′)}.

By the contrapositive of the second point of Lemma 2 and S(ym) > 0, x > ym. And

since S(y−) does not exist, x < y. If S(x) > 0, by the contrapositive of the second

point of Lemma 2, there exists an ε′ > 0 such that S(θ) ≥ 0 for all θ ∈ (x, x + ε′).

This implies S is continuous on θ ∈ (ym, x + ε′), contradicting the definition of x. If

S(x) < 0, by the contrapositive of the first point of Lemma 2, there exists an ε′′ > 0

such that S(θ) ≤ 0 for all θ ∈ (x− ε′′, x), contradicting the definition of x.

Lemma 4. Differentiability. Suppose a separating strategy S is incentive compat-

ible. Then at every point in (m,M) where S is continuous, S is differentiable and

satisfies (2) and (3).

Proof of Lemma 4. The proof of Theorem 1 in Mailath (1987) establishes the differ-

entiability of S when S(θ) 6= 0.16 Next we analyze the case when S is zero. Suppose

S is continuous at some t ∈ (m,M) and S(t) = 0.

First, we rule out the case in which k2t + b2 6= t (t 6= θ0). Suppose k2t + b2 < t.

(The case in which k2t + b2 > t is proven symmetrically.) Take an ε > 0 sufficiently

small such that k2(t + ε) + b2 < t + ε. Then the sender at state t + ε has a strict

incentive to mimic state t since

U (t; t+ ε)−U (t+ ε; t+ ε) = S2(t+ ε) + 2δ(t− k2t− b2)ε+O(ε2),

which is strictly positive as ε is small, contradicting incentive compatibility.

For the remaining proof, we assume k2t + b2 = t. Suppose r = 0; then k2 = 1

and b2 = 0. Then by DE (2), the sender’s strategy is S = 0, which is differentiable.

Suppose r 6= 0. As k2 6= 1, it must be true that t = θ0. For any θ 6= θ0, by the first

part, S(θ) 6= 0. By the Jump Lemma, there exists an ε′ such that S is continuous

on (t − ε′, t + ε′). As S is nonzero and continuous on (t − ε′, t), the behavior of S is

governed by differential equation (2). Now we analyze this case by case in terms of ∆.

16On page 1361 of Mailath (1987), the proof of Theorem 1 consists of four propositions.
Proposition 2 proves differentiability. To adopt his proof, we only need to redefine his Y to be
Y , {y ∈ R : ∃θ, V (θ, θ, y) ≥ V (θ,m, σ(m)}.
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Figure 9: Solutions for r > 0
This figure is drawn for k1 = 1, k2 = 1.5, b1 = b2 = δ = 0.5.

It is impossible that ∆ < 0 since no separating solution (11) crosses (θ, S) = (θ0, 0).17

Now suppose ∆ ≥ 0. If r > 0, only two linear solutions cross (θ, S) = (θ0, 0) (Figure

9), and they are differentiable. Supposing r < 0, all solutions cross (θ, S) = (θ0, 0).

As linear solutions are always differentiable, we only need to show that nonlinear

solutions are differentiable at θ0. We prove the stronger result that the derivative of

all nonlinear solutions is w1.

Let us analyze the right derivative of all nonlinear solutions at θ0. Take a suf-

ficiently small ε′′. It must be true that S(θ)
θ−θ0 ∈ (w1, 0) for all θ ∈ (θ0, θ0 + ε′′) or

S(θ)
θ−θ0 ∈ (w2, w1) for all θ ∈ (θ0, θ0+ε′′) (Figure 10). It suffices to consider S(θ)

θ−θ0 ∈ (w1, 0)

for all θ ∈ (θ0, θ0 + ε′′). Take a nonlinear solution S and let

T , inf
θ∈(θ0,θ0+ε′′)

S (θ)

θ − θ0

.

By design, T ∈ [w1, 0]. As dS
dθ

is uniquely determined by S (θ)
θ−θ0 (recall dS

dθ
= r(θ−θ0)

S
−k1)

and d2S
dθ2

> 0 for S(θ)
θ−θ0 ∈ (w1, 0) and θ > θ0,18 for any z close to T and z > T , integral

curve S crosses Z(θ) = z(θ−θ0) on (θ0, θ0 +ε′′) at most once and can only cross from

below; that is, ∃εz > 0 such that for all θ ∈ (θ0, θ0 + εz),
S (θ)
θ−θ0 ∈ [T, z). Let z → T+.

Then for θ ∈ (θ0, θ0 + εz),
S (θ)
θ−θ0 → T and S (θ)−S (θ0)

θ−θ0 → T . Plugging these two into

17For any integral constant C, the integral curve infinitely swirls around the singularity (θ, S) =
(θ0, 0) while approaching it. We discuss this case thoroughly in Online Appendix E.

18To see this, notice d2S(φ)
dφ2 =

d( dSdφ )

dS
dS
dφ = r[ 1S −

φ
S2 ( rφS −k1)] = rφ2

S3 (w2 +k1w−r) where φ , θ−θ0
and w , S

φ .
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Figure 10: Solutions for r < 0, ∆ > 0
This figure is drawn for k1 = 1, k2 = 0.8, b1 = δ = 0.5, b2 = 0.1.

differential equation (2), we have T + k1 = r
T

. And by T ∈ [w1, 0), T = w1. Thus the

right derivative exists and is w1. A similar argument goes for the left derivative.

Proof of Proposition 1. The necessity follows from Lemmas 1, 4, and 3. We next

prove sufficiency.

We first calculate ∂U (θ̂;θ)

∂θ̂
when the sender’s strategy is continuous at θ̂:

∂U (θ̂; θ)

∂θ̂
= −2[σ(θ̂)− k1θ − b1]

dσ(θ̂)

dθ̂
− 2δ(θ̂ − k2θ − b2)

= −2(θ̂ − θ)[k1(S ′(θ̂) + k1) + δk2]

= −2(θ̂ − θ)[k1
rθ̂ + δb2

S(θ̂)
+ δk2]

= (θ̂ − θ)∂
2U (t; θ̂)

∂t2

∣∣∣∣
t=θ̂

The expression has the same sign as θ − θ̂ by the second-order condition. Thus,

whenever the sender’s strategy is continuous at θ̂, the sender has an incentive to

induce a slightly higher belief when θ > θ̂ and a slightly lower belief when θ < θ̂.

Now suppose S is discontinuous at θ̂. By assumption, S jumps upward if k1 > 0 and

downward if k1 < 0, with |S| being continuous. Then U (θ̂+; θ) − U (θ̂−; θ) > 0 if

θ > θ̂, and U (θ̂+; θ)−U (θ̂−; θ) < 0 if θ < θ̂. Therefore, the sender always benefits

from inducing a belief that is closer to the true state θ. We therefore have incentive
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compatibility.

C Omitted Proofs in Section 4

We first prove the Contraction and Expansion Lemmas, which help us identify the

optimal incentive-compatible strategy in the proof of Theorem 2. The Off-Path-Belief

Lemma specifies the off-path belief for the optimal incentive-compatible strategy.

Then we can prove Theorem 2.

Definition 1. A strategy S is incentive compatible over W if U (θ′; θ) ≤ U (θ; θ) for

all θ, θ′ ∈ W .

Lemma 5. Contraction Transform. Let Θ1 and Θ2 be two non-overlapping in-

tervals partitioning Θ; that is, Θ = Θ1 ∪ Θ2, Θ1 ∩ Θ2 = ∅, θ1 < θ2 for all θ1 ∈ Θ1,

θ2 ∈ Θ2. Suppose S1(θ) is an incentive-compatible separating strategy. Suppose a

separating strategy S2(θ) is incentive compatible over Θ2. If

1. ∀θ2 ∈ Θ2, |S2(θ2)| ≤ |S1(θ2)|

2. ∀θ1 ∈ Θ1, ∀θ2 ∈ Θ2, |S1(θ2) + k1(θ2 − θ1)| ≤ |S2(θ2) + k1(θ2 − θ1)|,

then

S(θ) ,

S1(θ), if θ ∈ Θ1

S2(θ), if θ ∈ Θ2

is incentive compatible.

In other words, if an incentive-compatible separating strategy S1 contracts over

Θ2 toward the bliss point of Θ2 while moving away from the bliss point of Θ1 (see

Figure 11), it is still incentive compatible.

Proof of Lemma 5. Take a strategy S defined as above, and let σ denote its action.

As S1 is incentive compatible, a sender with state θ ∈ Θ1 does not mimic any other

state in Θ1. As S2 is incentive compatible over Θ2, a sender with state θ ∈ Θ2 does

not mimic any other state in Θ2. Let θ1 ∈ Θ1, θ2 ∈ Θ2. A sender with state θ2 does
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Figure 11: Contraction Transform

not mimic θ1 because

U (θ1; θ2) ≤ −(S1(θ2))2 − δ(θ2 − k2θ2 − b2)2

≤ −(S2(θ2))2 − δ(θ2 − k2θ2 − b2)2

= −(S(θ2))2 − δ(θ2 − k2θ2 − b2)2

= U (θ2; θ2).

The first inequality is true because S1 is incentive compatible, and the second in-

equality is true by assumption.

The sender with state θ1 does not mimic θ2, because

U (θ2; θ1) = −(σ(θ2)− k1θ1 − b1)2 − δ(θ2 − k2θ1 − b2)2

= −(S(θ2) + k1(θ2 − θ1))2 − δ(θ2 − k2θ1 − b2)2

= −(S2(θ2) + k1(θ2 − θ1))2 − δ(θ2 − k2θ1 − b2)2

≤ −(S1(θ2) + k1(θ2 − θ1))2 − δ(θ2 − k2θ1 − b2)2

≤ −(S1(θ1))2 − δ(θ1 − k2θ1 − b2)2

= U (θ1; θ1).

The first inequality is true by assumption, and the second inequality is true because

S1 is incentive compatible.

For the following lemma, we only state the case of positive S.
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Lemma 6. Monotone Expansion. Let θ0 ∈ Θ and θ0 6= θ0. Suppose qθ0 + n ≥ 0.

Let S(θ; q, n, p) denote the solution for

dS

dθ
=
qθ + n

S
+ p, S ≥ 0

with initial value S(θ0; q, n, p) = 0.19 For any θ ≥ θ0, S(θ; q, n, p) monotonically

increases in n and p, increases in q if θ > 0, and decreases in q if θ < 0.

Proof of Lemma 6. It suffices to prove the monotonicity in p. Let p1 ≤ p2. We show

S(θ; q, n, p1) ≤ S(θ; q, n, p2) for θ ≥ θ0.

By way of contradiction, suppose ∃θ∗ > θ0 such that S(θ∗; q, n, p1) > S(θ∗; q, n, p2).

Because S(θ0; q, n, p1) = S(θ0; q, n, p2) = 0 and

S(θ; q, n, p) =

∫ θ

θ0

∂S(θ; q, n, p)

∂θ
dθ,

there must exist θ̃ ∈ (θ0, θ∗) such that

S(θ̃; q, n, p1) > S(θ̃; q, n, p2)

and
∂S(θ; q, n, p1)

∂θ

∣∣∣∣
θ=θ̃

>
∂S(θ; q, n, p2)

∂θ

∣∣∣∣
θ=θ̃

,

contradicting

∂S(θ; q, n, p1)

∂θ

∣∣∣∣
θ=θ̃

=
qθ + n

S(θ̃; q, n, p1)
+ p1

<
qθ + n

S(θ̃; q, n, p2)
+ p1

≤ qθ + n

S(θ̃; q, n, p2)
+ p2

=
∂S(θ; q, n, p2)

∂θ

∣∣∣∣
θ=θ̃

.

Lemma 7. Off-Path Belief. Let AS1 , {aS1 (θ)|θ ∈ Θ}. If AS1 ⊂ A1, a continuous

19When θ0 6= θ0, the differential equation with the initial value has a unique solution.

38



incentive-compatible strategy σ(θ) and degenerate off-path belief

θ̂(a1) =

 θ, if a1 < minθ∈Θ σ(θ)

θ, if a1 > maxθ∈Θ σ(θ).

Here, θ ∈ arg minθ∈Θ σ(θ), θ ∈ arg maxθ∈Θ σ(θ) form a perfect Bayesian equilibrium.

Proof of Lemma 7. If the sender takes action a1 < minθ∈Θ σ(θ) given state θ, the

receiver believes θ̂ = θ. Hence, the sender’s payoff

V (θ, θ, a1) = −(a1 − k1θ − b1)2 − δ(θ − k2θ − b2)2

< −(min
θ∈Θ

σ(θ)− k1θ − b1)2 − δ(θ − k2θ − b2)2

= U (θ; θ)

because AS1 ⊂ A1. That is, this action is strictly worse than mimicking state θ.

Therefore, this deviation is not profitable for the sender.

On the other hand, if the sender takes action a1 > maxθ∈Θ σ(θ) at state θ, the

receiver believes θ = θ. The sender’s payoff

V (θ, θ, a1) = −(a1 − k1θ − b1)2 − δ(θ − k2θ − b2)2

< −(max
θ∈Θ

σ(θ)− k1θ − b1)2 − δ(θ − k2θ − b2)2

= U (θ; θ).

This action is strictly worse than mimicking state θ.

Proof of Theorem 2. Throughout this proof, it is very helpful to keep in mind the

figures of integral curves. And we only need to consider the case of k1 > 0 since the

cases of k1 > 0 and k1 < 0 are symmetric around the θ-axis by differential equation

(2). Let S∗ denote the optimal incentive-compatible strategy. Let S̃ denote any

discontinuous incentive-compatible strategy and θ̃ denote any discontinuous point.

As
d2S(φ)

dφ2
=
d(dS

dφ
)

dS

dS

dφ
= r(

1

S
− φ

S2

dS

dφ
),
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the second-order condition can be reduced to

∂2U (θ′; θ)

∂θ′2

∣∣∣∣
θ′=θ

= −2(
dS(θ)

dθ
+ k1)2 − 2S

d2S(θ)

dθ2
− 2δ

= −2δ[k2 + k1
(k2 − 1)θ + b2

S
]

≤ 0.

Notice that any linear solution of (2) satisfies the second-order condition trivially, as

−2(dσ(θ)
dθ

)2 − 2δ ≤ 0.

Case 1: r = 0

We plot the solutions in Figure 12. The SOC is δ[k1b2
S

+ 1] ≥ 0. We only analyze

the case of b2 > 020 since the case of b2 < 0 can be addressed centro-symmetrically.

When b2 > 0, the SOC requires S ≥ 0 or S ≤ −k1b2. There is one strategy crossing

theta
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Figure 12: Solutions for r = 0
The yellow region is removed by the SOC.

(θ, S) = (m, 0),

k2
1(θ −m) + k1S

∗ + δb2 ln(δb2 − k1S
∗) = δb2 ln(δb2) (S∗ ≥ 0).

It is uniformly closest to sender’s bliss point S = 0 among all incentive-compatible

strategies S ≥ 0. Next we show it dominates any incentive-compatible strategy

20When b2 = 0, the optimal solution is trivially S = 0.
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S < 0. For a solution k2
1θ + k1S + δb2 ln(δb2 − k1S) = C, let S+(θ;C), S−(θ;C)

denote the positive branch (S ≥ 0) and the negative one (S ≤ 0). By the Monotone

Expansion Lemma 6, |S+(θ;C)| ≤ |S−(θ;C)|. Thus, S∗ dominates all incentive-

compatible strategies S ≤ 0 defined over Θ. Next we show S∗ dominates any dis-

continuous incentive-compatible strategy S̃. Although the SOC does not bind S∗, it

binds the initial condition of any discontinuous incentive-compatible strategy S̃ such

that S̃(0) ≤ −k1b2. Let S−(θ; δb2 ln(δb2) + k2
1m) denote the negative branch of the

integral curve on which S∗ lies. For θ ∈ [m, θ̃],

|S̃(θ)| ≥ |S−(θ; δb2 ln(δb2) + k2
1m)| ≥ |S∗(θ)|,

where the second inequality is true by the Monotone Expansion Lemma. Because

|S̃(θ̃)| ≥ |S∗(θ̃)| and |S| is continuous,

|S̃(θ)| ≥ |S∗(θ)|, θ ∈ [θ̃,M ].

S̃ is uniformly dominated by S∗.

Thus, the optimal incentive-compatible strategy is unique and is S∗, which is

continuous. By dσ
dθ

= δb2
S
> 0, it is monotonic. Moreover, by k1 > 0,

AS1 ⊂ A1.

Thus, it supports a perfect Bayesian equilibrium by Lemma 7.

Case 2: r > 0

In this case, ∆ > 0. In Figure 13, we plot the solution for r > 0.

Suppose θ0 /∈ Θ. It suffices to consider θ0 < m. There is one solution crossing

(θ, S) = (m, 0) among all solutions (9):

(w1φ− S∗)w1

(S∗ − w2φ)w2
=

[w1(m− θ0)]w1

[w2(θ0 −m)]w2
(S∗ ≥ 0, φ ∈ [m− θ0,M − θ0])

It satisfies the SOC and is uniformly closest to the sender’s bliss point S = 0 among

all incentive-compatible strategies S ≥ 0. By the Monotone Expansion Lemma 6,

S∗ dominates any incentive-compatible strategy S < 0. By the same argument as

in case 1, S∗ dominates any discontinuous incentive-compatible strategies. Thus, the

optimal incentive-compatible strategy is unique and is S∗, which is continuous and
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Figure 13: Solutions for r > 0
The yellow shadow is the region removed by the SOC. This figure is drawn for k1 = 1,

k2 = 1.5, b1 = b2 = δ = 0.5.

nonlinear. Because dσ
dθ

= rφ
S∗

> 0, it is monotonic. Moreover, it supports a perfect

Bayesian equilibrium by Lemma 7.

Suppose θ0 ∈ Θ. Branches (w1φ−S)w1

(S−w2φ)w2
= C, (S−w1φ)w1

(w2φ−S)w2
= C cannot be supported

on Θ. In addition, Branches (S−w1φ)w1

(S−w2φ)w2
= C, (w1φ−S)w1

(w2φ−S)w2
= C, S = w2φ are uniformly

dominated by S∗ = w1φ. Next we show S∗ uniformly dominates any discontinuous

incentive-compatible strategy S̃. If w1(m− θ0) < S̃(m) < w2(m− θ0), we must have

θ̃ < θ0,

|S̃(θ̃)| < w2(θ̃ − θ0)

because w1 > 0 > w2 and |w1| ≤ |w2|. Then, S̃ cannot be supported on Θ. If

S̃(m) < w1(m− θ0), S̃ either cannot be supported on Θ if |S̃(θ̃)| < |w2(θ̃ − θ0)| or is

uniformly dominated by S∗ = w1(θ − θ0) if |S̃(θ̃)| > |w2(θ̃ − θ0)|.
Thus, the optimal incentive-compatible strategy is unique and is S∗, which is

continuous, monotonic, and linear. Moreover, as w1 > 0 and k1 > 0, AS1 ⊂ A1. Thus,

S∗ supports a perfect Bayesian equilibrium by Lemma 7.

Case 3: r < 0

We further categorize this case in terms of ∆.

Case 3.1: r < 0, ∆ > 0

In Figure 14, we plot the solution for r < 0, ∆ > 0.
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Figure 14: Solutions for r < 0, ∆ > 0
The yellow shadow identifies the region removed by the SOC. This figure is drawn for

k1 = 1, k2 = 0.8, b1 = δ = 0.5, b2 = 0.1.

Suppose θ0 /∈ Θ. If θ0 ≥M , there is one solution crossing (θ, S) = (m, 0):

(w1φ− S∗)w1

(w2φ− S∗)w2
=

[w1(m− θ0)]w1

[w2(m− θ0)]w2
(S∗ ≥ 0, φ ∈ [m− θ0,M − θ0]) (13)

It satisfies the SOC and is uniformly closest to the sender’s bliss point S = 0 among

all S ≥ 0 incentive-compatible strategies. By the monotone expansion property, it

dominates any incentive-compatible strategy with S < 0. By the same argument as

in case 1, S∗ dominates any discontinuous incentive-compatible strategies. Thus, S∗

is the unique optimal incentive-compatible strategy, and it is continuous and nonlin-

ear. As dσ
dθ

= rφ
S∗

> 0, S∗ is monotonic. Moreover, S∗ supports a perfect Bayesian

equilibrium by Lemma 7. If θ0 ≤ m, the same argument applies and the optimal one

crosses (θ, S) = (M, 0):

(S∗ − w1φ)w1

(S∗ − w2φ)w2
=

(−w1(M − θ0))w1

(−w2(M − θ0))w2
(S∗ ≤ 0, φ ∈ [m− θ0,M − θ0]) (14)

Suppose θ0 ∈ Θ. By the argument above, for θ ∈ [m, θ0], solution (13) is optimal;

for θ ∈ [θ0,M ], solution (14) is optimal. Nevertheless, since (13) and (14) are not

necessarily21 on the same integral curve, we need to check whether the combination

21They are on the same integral curve if and only if θ0 = m+M
2 .
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S∗: (13)+(14) is incentive compatible. By the centrosymmetry of DE (5), any integral

curve crossing (φ, S) = (0, 0) is centrosymmetic around (φ, S) = (0, 0). By DE (5),

dσ(θ)

dθ
=
dS∗

dφ
+ k1 =

δ(k2 − 1)φ

S∗
> 0

on the combination (13)+(14). Thus, by Lemma 5, the combination is a contraction

transform (see Figure 11) of the integral curve (13) if θ0 >
m+M

2
, (14) if θ0 <

m+M
2

.

Therefore, the combination S∗ is incentive compatible and dominates any continu-

ous incentive-compatible strategy. Next we show S∗ dominates any discontinuous

incentive-compatible strategy S̃.

By the Monotone Expansion Lemma and the second-order condition,

|S̃(θ̃)| ≥ |S∗(θ̃)|.

If |S̃(θ̃)| ≤ |w2(θ̃ − θ0)|, S̃ is uniformly dominated by S∗; if |S̃(θ̃)| > |w2(θ̃ − θ0)|, S̃
is either undefined for the entire Θ or uniformly dominated by S∗ by the Monotone

Expansion Lemma.

Therefore, S∗ is the unique optimal incentive-compatible strategy and is nonlinear,

monotonic, and continuous. By Lemma 7, it supports a perfect Bayesian equilibrium.

The analysis for the remaining cases below is similar.

Case 3.2: r < 0, ∆ = 0 (See Figure 15)

If θ0 > M , the unique optimal solution crosses (θ, S) = (m, 0):

ln(w1φ−S∗)−
w1φ

S∗ − w1φ
= ln(w1(m−θ0))+1 (S∗ ≥ 0, φ ∈ [m−θ0,M−θ0]) (15)

The solution satisfies the SOC and is continuous and nonlinear. It is monotonic by
dσ
dθ

= rφ
S∗

> 0. By Lemma 7, it supports a perfect Bayesian equilibrium. If θ0 < m,

the unique optimal strategy crosses (θ, S) = (M, 0):

ln(S∗−w1φ)− w1φ

S∗ − w1φ
= ln(−w1(M − θ0)) + 1 (S∗ ≤ 0, φ ∈ [m− θ0,M − θ0])

(16)

This satisfies the SOC and is continuous and nonlinear. It is monotonic because
dσ
dθ

= rφ
S∗
> 0. By Lemma 7, it supports a perfect Bayesian equilibrium. If θ0 ∈ Θ, by

the same argument as in case 3.2, the combination (15)+(16) is the unique optimal
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Figure 15: Solutions for r < 0, ∆ = 0
The yellow region is removed by the SOC. This figure is drawn for k1 = 1, k2 = 0.5,

b1 = 0.5, b2 = 0.2, δ = 0.4.

incentive-compatible strategy, which is nonlinear, continuous, and monotonic and

supports a perfect Bayesian equilibrium.

Proof of Proposition 5. If the sender’s strategy is linear, we can directly check how

|w1| varies with δ by (7) and (8).

Now suppose the sender’s strategy in Riley equilibrium is nonlinear. If r = 0, we

can apply the Monotone Expansion Lemma to

dS

dθ
=
δb2

S
− k1

with θ0 = m or θ0 = M . If r 6= 0, we can similarly apply the Monotone Expansion

Lemma to
dS

dφ
=
rφ

S
− k1

with θ0 = m or θ0 = M .
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Figure 16: Delegation S(θ)
This figure is drawn for k1 = k2 = 1, b1 = b2 = 0.2, δ = 0.5.

D Omitted Proofs in Section 5

Proof of Proposition 3. The proof follows directly by checking each solution in the

proof of Theorem 2 and taking k1 = 1 and b1 = 0.

Proof of Proposition 4. By the proof of Theorem 2, any incentive-compatible strategy

belongs to one of the following two cases:

(1) S(θ) is continuous (Figure 16):

θ + S + δb ln |S − δb| = C, (S ≥ 0 or S ≤ −b)

or

S = δb (17)

(2) S(θ) is discontinuous at some θ̃ ∈ (0, 1) and satisfies the following conditions:

θ + S + δb ln(δb− S) = C (S ≤ −b)

for θ < θ̃, and

θ + S + δb ln(S − δb) = C ′ (S > δb)

for θ > θ̃, where C and C ′ are chosen such that −S(θ̃−) = S(θ̃+).

By Lemma 9, all discontinuous strategies are Pareto dominated by linear strategy
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(17). By Lemma 8, continuous decreasing strategies

θ + S + δb ln(δb− S) = C, S ≤ −b (18)

cannot be part of any perfect Bayesian equilibrium.

Among all increasing continuous strategies, the (agent’s) optimal incentive-compatible

strategy is closest to the principal’s ideal point.

Lemma 8. Strategy (18) cannot be part of a perfect Bayesian equilibrium.

Proof of Lemma 8. Since
dS

dθ
=
δb

S
− 1 < −1,

we have

S(θ) < −b− θ.

Since σ(θ) ≤ 0 on the equilibrium path for all θ, we consider a deviation to a1 = θ+ b

at some state θ > 0.

If the off-path belief assigns probability 1 to θ = 0 when the agent deviates to

a1 = θ + b, the agent’s payoff is

V (θ, 0, θ + b) = −δ(θ + b)2 ≥ −(θ + b)2 > −S2(θ) > −S2(θ)− δb2 = V (θ, θ, σ(θ)),

a profitable deviation regardless of θ.

If the off-path belief assigns probability 1 to θ = 1 when the agent deviates to

a1 = θ + b, the agent’s payoff is

V (θ, 1, θ + b) = −δ(1− θ − b)2.

When state θ ≥ 1
2
− b,

V (θ, 1, θ + b) = −δ(1− θ − b)2 ≥ −δ(θ + b)2 > −S2(θ) > V (θ, θ, σ(θ)),

a profitable deviation whenever θ ≥ 1
2
− b.

For other possible off-path beliefs, the principal will take a second-period action

within the interval (0, 1). Hence the agent’s payoff is bounded below by min{−δ(θ +
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b)2,−δ(1 − θ − b)2}. Therefore, there is always a profitable deviation when θ ≥
1
2
− b.

Lemma 9. Any discontinuous incentive-compatible strategy in a perfect Bayesian

equilibrium is Pareto dominated by the linear strategy S = δb.

Figure 17: Discontinuous Colution

Proof of Lemma 9. Compared with the discontinuous solution, the linear special so-

lution is uniformly closer to the agent’s bliss point. Thus, it suffices to prove that the

linear special solution dominates from the principal’s perspective.

This proof proceeds as follows (see Figure 17): 1. Move the left area S ≤ −b
closer to the principal’s bliss point S = −b to form an upper bound to her payoff

through linear approximation over interval [0, θ̃]. 2. Move the right area S > δb to

the left (decrease the constant C1) and then reach an upper bound to the principal’s

payoff through linear approximation over the interval [θ̃, θ̃ + D] (D is defined as the

size of interval when the linear approximation is above S = δb). Notice that the

movement in the second step relies on the first step since |S| is continuous at θ̃. 3.

Assume θ̃ + D ≤ 1. Prove that the upper bound of the principal’s payoff by linear

approximation is lower than that of the special linear solution, −(b + δb)2. 4. Prove

that θ̃ +D ≤ 1; otherwise this solution could not be a perfect Bayesian equilibrium.
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Step 1. Define the principal’s payoff over [0, θ̃] as u1 and her payoff over [0, θ̃] of

linear approximation as U1. For 0 ≤ θ ≤ θ̃, S ≤ −b,

dS

dθ
=
δb

S
− 1 ≥ −(1 + δ)

S(θ̃−) > −b− (1 + δ)θ̃.

Since d2S
dθ2
≥ 0,

dS

dθ
< −[1 +

δb

b+ (1 + δ)θ̃
].

Define K as

K = 1 +
δb

b+ (1 + δ)θ̃

S(θ) = S(0) +

∫ θ

0

dS(t)

dt
dt < −b−Kθ

u1 = −
∫ θ̃

0

[S(θ) + b]2dθ < −
∫ θ̃

0

(Kθ)2dθ = −1

3
K2θ̃3 = U1

S(θ̃−) = S(0) +

∫ θ̃

0

dS(θ)

dθ
dθ < −b−Kθ̃.

Define S0 as

S0 = b+Kθ̃.

Step 2. Denote the principal’s payoff over [θ̃, 1] as u2 and her payoff over [θ̃, 1]

of linear approximation as U2. Denote the solution passing through (θ̃+, S(θ̃+)) as

θ + S(θ, C1) + δb ln[S(θ, C1)− δb] = C1, and the solution passing through (θ̃+, S0) as

θ + S(θ, C∗1) + δb ln[S(θ, C∗1)− δb] = C∗1 .

For θ̃ ≤ θ ≤ 1, S > δb,

∂S(θ, C)

∂C
= −∂S(θ, C)

∂θ
> 0.

Since S(θ̃+) = −S(θ̃−) > S0,

C1 > C∗1

S(θ, C1) > S(θ, C∗1).
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Since
∂S2(θ,C∗1 )

∂θ2
> 0

S(θ, C∗1) ≥ S0 + (θ − θ̃)∂S(t, C∗1)

∂t

∣∣∣∣
t=θ̃+

= S0 + (θ − θ̃)( δb
S0

− 1).

Define k as

k = −∂S(t, C∗1)

∂t

∣∣∣∣
t=θ̃+

= 1− δb

S0

.

Define D as the size of interval when the linear approximation is above S = δb

S0 +D(
δb

S0

− 1) = δb

D = S0.

Therefore, for θ ∈ [θ̃, θ̃ +D],

S(θ, C1) > S(θ, C∗1) ≥ S0 − k(θ − θ̃) ≥ δb,

while S(θ, C1) > δb for θ ∈ [θ̃ +D, 1]. Here we assume θ̃ +D ≤ 1, and we prove that

this assumption is guaranteed in step 3.

u2 =−
∫ 1

θ̃

[S(θ, C1) + b]2dθ

<−
∫ 1

θ̃

[S(θ, C∗1) + b]2dθ

<−
∫ θ̃+D

θ̃

[S0 − k(θ − θ̃) + b]2dθ −
∫ 1

θ̃+D

(δb+ b)2dθ

=−
∫ D

0

[kt+ (b+ δb)]2dt− (b+ δb)2(1− θ̃ −D)

=U2

Step 3. To prove u1 + u2 < −(b+ δb)2, it suffices to prove

U1 + U2 < −(b+ δb)2. (19)
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Define p = b+ δb, q = b− δb. (19) becomes

−1

3
K2θ̃3 − pkD2 − k2D

3

3
< −p2θ̃.

It would be sufficient if we could prove that

pkD2 ≥ p2θ̃.

With the definitions of k, D, and S0,

S0(S0 − δb) ≥ pθ̃

(b+Kθ̃)(b+Kθ̃ − δb) ≥ pθ̃. (20)

For inequality (20), define G(θ̃) as

G(θ̃) = LHS− RHS.

To prove (20), it suffices to prove that G(θ̃) ≥ 0. Since K = 1 + δb
b+(1+δ)θ̃

> 1,

G(θ̃) > (θ̃ + b)(θ̃ + q)− pθ̃ = θ̃2 + b(1− 2δ)θ̃ + bq.

However, if δ ≤ 0.5, then G(θ̃) > 0, which concludes our proof. So we focus on the

case of

δ > 0.5 (21)

from now on.

G(θ̃) = K2θ̃2 + [K(q + b)− p]θ̃ + qb

G(0) = bq ≥ 0

To prove G(θ̃) ≥ 0, it is sufficient to prove

G
′
(θ̃) ≥ 0

G
′
(θ̃) = 2θ̃K2 +K(b+ q)− p+ 2θ̃2KK

′
+ (b+ q)θ̃K

′
.
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By K(θ̃) = 1 + δb
b+(1+δ)θ̃

, we can find its derivative with regard to θ̃:

K
′
(θ̃) = −δb 1 + δ

[b+ (1 + δ)θ̃]2

K
′′
(θ̃) = 2δb

(1 + δ)2

[b+ (1 + δ)θ̃]3

Since G
′
(0) = K(b+ q)− p = (1 + δ)(b+ q)− p = (1 + δ)q ≥ 0, to arrive at G

′
(θ̃) ≥ 0,

it is sufficient to prove

G
′′
(θ̃) ≥ 0 (22)

G
′′
(θ̃) =4θ̃KK

′
+ 2K2 + (b+ q)K

′
+ 2(2θ̃KK

′
+ θ̃2K

′
K
′
+ θ̃2KK

′′
) + (b+ q)(K

′
+ θ̃K

′′
)

=8θ̃KK
′
+ 2K2 + 2(b+ q)K

′
+ 2θ̃2K

′
K
′
+ 2θ̃2KK

′′
+ (b+ q)θ̃K

′′
.

To prove (22), because 2θ̃2K
′
K
′
+ 2θ̃2KK

′′
> 0, it is sufficient to prove

4θ̃KK
′
+K2 + (b+ q)K

′
+
b+ q

2
θ̃K

′′ ≥ 0

K2 +
b+ q

2
θ̃K

′′ ≥ [4θ̃K + (b+ q)] · |K ′|.

Plugging in K(θ̃), K
′
(θ̃), and K

′′
(θ̃), it becomes

(1 + δ)2(b+ θ̃)2 +
b+ q

2
θ̃

2δb(1 + δ)2

b+ (1 + δ)θ̃
≥ [4θ̃K + (b+ q)]δb(1 + δ)

(1 + δ)(b+ θ̃)2 + θ̃
(b+ q)δb(1 + δ)

b+ (1 + δ)θ̃
≥ [4θ̃K + (b+ q)]δb

(1 + δ)θ̃2 + θ̃b[2(1 + δ) +
(b+ q)δ(1 + δ)

b+ (1 + δ)θ̃
− 4Kδ] + (1 + δ)b2 − δb2(2− δ) ≥ 0

(1 + δ)θ̃2 + θ̃b[2(1 + δ) +
δ(b+ q − 4b− 4θ̃)(1 + δ)

b+ (1 + δ)θ̃
] + (1 + δ2 − δ)b2 ≥ 0

(1 + δ)θ̃2 + θ̃b(1 + δ)[2− δ (2 + δ)b+ 4θ̃

b+ (1 + δ)θ̃
] + (1 + δ2 − δ)b2 ≥ 0. (23)

Analyze the term in the square bracket (2+δ)b+4θ̃

b+(1+δ)θ̃
.
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If 2+δ
1
≤ 4

1+δ
, then δ ≤ δ∗ ≈ 0.56

[2− δ (2 + δ)b+ 4θ̃

b+ (1 + δ)θ̃
] ≥ 2− δ 4

1 + δ
≥ 2− δ 4

1 + 1
2

≥ 2− 8δ∗

3
> 0,

where the second inequality is ensured by (21). Therefore, this concludes our proof.

If 2+δ
1
> 4

1+δ
, δ > δ∗ ≈ 0.56 and [2− δ (2+δ)b+4θ̃

b+(1+δ)θ̃
] > 2− δ(2 + δ). For (23),

LHS > (1 + δ)θ̃2 + θ̃b(1 + δ)[2− δ(2 + δ)] + (1 + δ2 − δ)b2.

Thus, it suffices to prove

(1 + δ)θ̃2 + θ̃b(1 + δ)(2− 2δ − δ2) + (1 + δ2 − δ)b2 ≥ 0. (24)

If 2 − 2δ − δ2 ≥ 0, δ ≤ δ∗∗ ≈ 0.73, and we would be done here. Otherwise, LHS of

(24) would reach its minimum at θ̃ = b(δ2+2δ−2)
2

. (24) becomes

−b
2(1 + δ)(δ2 + 2δ − 2)2

4
+ (1 + δ2 − δ)b2 ≥ 0

4(1 + δ2 − δ)− (1 + δ)(δ2 + 2δ − 2)2 ≥ 0,

which holds not only for δ > δ∗∗ ≈ 0.73 but for ∀δ ∈ [0, 1].

Figure 18: 4(1 + δ2 − δ)− (1 + δ)(δ2 + 2δ − 2)2
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Step 4. The above argument only works for θ̃+D ≤ 1. Now we rule out the case

of θ̃ + D > 1. If θ̃ + D > 1, the agent with state θ̃ would deviate to S(θ̃) = 0 under

off-equilibrium belief θ̂ = 1 because

V (θ̃, θ̃, σ(θ̃)) = −S2(θ̃)− δb2 < −S2
0 − δb2 ≤ −S2

0 = −D2 < −(1− θ̃)2

≤ −(1− θ̃ − b)2 ≤ −δ(1− θ̃ − b)2 = V (θ̃, 1, θ̃ + b),

where the fourth inequality holds since θ̃ < 1
2
− b (by the proof of Lemma 8). In

addition, the agent will deviate to S(θ̃) = 0 if off-equilibrium belief θ̂ = 0 (by the

proof of Lemma 8). Therefore, an agent with state θ̃ would deviate no matter what the

off-equilibrium belief is, which means this is not a perfect Bayesian equilibrium.

E Online Appendix: Negative Discriminant Quadratic

Games

In this section, we establish the result for quadratic signaling games with ∆ < 0.

Similarly to the proof of Theorem 2, we only need to consider k1 > 0. We divide the

discussion into two cases.

Case 1: θ0 /∈ Θ

Proposition 7. In negative discriminant quadratic games, suppose θ0 /∈ Θ. There ex-

ists a unique Riley equilibrium. In this equilibrium, the sender’s strategy is nonlinear,

continuous, monotonic, and differentiable.

Proof of Proposition 7. Let g(φ, S) , ln |S2 + k1Sφ − rφ2| − k1
q

arg tan( S
qφ

+ k1
2q

). If

θ0 > M , the unique dominant solution crosses (θ, S) = (m, 0):

g(φ, S∗) = ln(−r(m− θ0)2)− k1

q
arg tan(

k1

2q
) (S∗ ≥ 0, φ ∈ [m− θ0,M − θ0])

This satisfies the SOC and is continuous and nonlinear. It is monotonic by da1
dθ

=
rφ
S∗
> 0. If θ0 < m, the unique dominant one crosses (θ, S) = (M, 0):

g(φ, S∗) = ln(−r(M − θ0)2)− k1

q
arg tan(

k1

2q
) (S∗ ≤ 0, φ ∈ [m− θ0,M − θ0])
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Figure 19: Solutions for ∆ < 0
The yellow region is removed by the SOC. This figure is drawn for k1 = 1, k2 = 0.4,

b1 = 0.5, b2 = 0.2, δ = 0.5.

This satisfies the SOC and is continuous and nonlinear. It is monotonic by da1
dθ

=
rφ
S∗
> 0.

Case 2: θ0 ∈ Θ

Proposition 8. In negative discriminant quadratic games, suppose θ0 ∈ Θ. There is

no continuous incentive-compatible separating strategy.

Proof of Proposition 8. All solutions of (11) feature S(θ0) 6= 0. By da1
dφ

= rφ
S

, any

separating strategy continuous at θ0 with S(θ0) 6= 0 must violate separation.

Thus, an incentive-compatible strategy must jump at θ0. By proposition 1, it is

discontinuous only at θ0 and jumps upward.

Proposition 9. In negative discriminant quadratic games, suppose θ0 ∈ Θ. Incentive-

compatible separating strategies exist if and only if k2 > 0.

Proof of Proposition 9. If k2 ≤ 0, the SOC implies

φ

S
≤ 0.

No separating strategy can jump upward. Thus, no incentive-compatible separating

strategies exists.
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If k2 > 0, SOC is
S

φ
≥ −k1(k2 − 1)

k2

by k2 < 1 because ∆ < 0. Then there exist discontinuous solutions of (11) jumping

upward at θ0 while satisfying the SOC. To show incentive compatibility, it suffices to

show any sender with θ ∈ [m, θ0] does not mimic θ′ ∈ (θ0,M ]. By k1 > 0, k2 > 0,

|S(θ0
−)| = |S(θ0

+)|. θ mimicking θ′ is worse than mimicking 2θ0−θ′ for both periods.

Incentive-compatible separating strategies thus exist.

Among all incentive-compatible separating strategies, the dominant one is closest

to S = 0 and satisfies

S(θ = m) =
−k1(k2 − 1)

k2

(m− θ0)

if θ0 ≥ m+M
2

, and it satisfies

S(θ = M) =
−k1(k2 − 1)

k2

(M − θ0)

if θ0 <
m+M

2
.

From now on, we focus on k2 > 0. ∆ = k2
1 + 4δ(k2 − 1) < 0 implies k2 < 1 − k21

4δ
.

Thus, k2 > 0 further implies k2 ∈ (0, 1− k21
4δ

), which is a very small parameter space.

We next show that in most cases, no perfect Bayesian equilibrium exists.

Proposition 10. In negative discriminant quadratic games, suppose θ0 ∈ Θ and

k2 > 0. If k2 <
k1√
δ
, there is no perfect Bayesian equilibrium.

Proof of Proposition 10. WLOG, suppose θ0 ≥ m+M
2

, and the SOC requires

S(θ = m) ≤ −k1(k2 − 1)

k2

(m− θ0)

σ(θ = m) ≤ k1m+ b1 −
k1(k2 − 1)

k2

(m− θ0).

By ∆ < 0, r < 0, φ
S
> 0, and da1

dφ
= rφ

S
, a1 is decreasing whenever continuous. Thus,

σ(θ = θ0) < σ(θ = m) ≤ k1m+ b1 −
k1(k2 − 1)

k2

(m− θ0),
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|S(θ = θ0)| > k1(θ0 −m) +
k1(k2 − 1)

k2

(m− θ0) =
k1

k2

(θ0 −m).

If the sender with θ = θ0 deviates to a′1 = k1θ0 + b1, the first-period gain is at least

[k1
k2

(θ −m)]2. Yet the largest second-period punishment is δ(θ0 −m)2. Therefore, if

(k1
k2

)2 > δ, the sender with θ = θ0 deviates for sure and there is no perfect Bayesian

equilibrium.
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